Influence of Organic, Inorganic Nitrogen Sources and Amino Acids on the Biosynthesis of Coenzyme $Q_{10}$ by Agrobacterium tumefaciens Mutant

Agrobacterium tumefaciens 변이주에 의한 Coenzyme $Q_{10}$ 생합성시 유기, 무기질소원과 아미노산의 영향

  • Kim, Jeong-Keun (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Won, Yong-Bae (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Lee, Kang-Moon (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
  • 김정근 (한국산업기술대학교 생명화학공학과) ;
  • 원용배 (한국산업기술대학교 생명화학공학과) ;
  • 이강문 (한국산업기술대학교 생명화학공학과) ;
  • 구윤모 (인하대학교 생물공학과)
  • Published : 2009.02.28

Abstract

The effect of inorganic, organic nitrogen sources and amino acids on the coenzyme $Q_{10}$ production and coenzyme $Q_{10}$ component ratio was investigated. Among the nine organic nitrogen sources, CSP showed a remarkable enhancing effect on the production of coenzyme $Q_{10}$. But this enhancement was not observed in medium containing Bacto peptone, tryptone, casamino acid and soybean meal. These differences on the production of coenzyme $Q_{10}$ may be due to differences in kinds and amounts of component amino acids and peptides in the various organic nitrogen sources tested. In the addition of inorganic nitrogens, only $(NH_4)_2SO_4$ increase the coenzyme $Q_{10}$ production by 2.0 times compare to the control group. The addition of L-tyrosine to the medium containing Bacto tryptone, was also determined to be crucial for the coenzyme $Q_{10}$ production. But phenylalanin and tryptophan, other aromatic amino acids, had no stimulatory effect on the coenzyme $Q_{10}$ production. These results show that the production and components ratio of coenzyme $Q_{10}$ was greatly affected by the kinds and the concentration of inorganic, organic nitrogen sources as well as amino acids.

Coenzyme $Q_{10}$ 고역가 변이주인 Agrobacterium tumefaciens KPU-11-03의 다양한 유기 질소원에 대한 coenzyme $Q_{10}$ 생산량과 coenzyme $Q_{10}$의 구성비율 등을 비교한 결과, CSP 첨가 시 coenzyme $Q_{10}$ 생산량은 212.7 mg/l, 구성비율은 94%로 다른 유기질소원에 비해 매우 높게 나타났다. 특히 Bacto tryptone, Bacto peptone, soybean meal, casamino acid 등의 유기 질소원 첨가 시에는 극히 낮은 coenzyme $Q_{10}$ 역가를 나타내어 균체내의 coenzyme $Q_{10}$의 축적은 유기 질소원의 종류 즉 아미노산의 종류 및 량과 상관성이 있음을 추정할 수 있었다. 또한 무기질소원에 대하여 실험한 결과, $(NH_4)_2SO_4$ 첨가 시에 coenzyme $Q_{10}$역가가 약 2배 증가하였고 다른 무기질소원에 사용 시에는 오히려 감소하였다. Coenzyme $Q_{10}$ 역가와 관련된 아미노산을 확인하기 위해 유기질소원으로 Bacto tryptone을 첨가한 배지에 9가지의 아미노산을 첨가하여 실혐한 결과, 방향족 아미노산인 tyrosine 첨가 시의 coenzyme $Q_{10}$ 생산량은 99.5 mg/l로 비첨가구보다 약 8.2배 증가하였으나 phenylalanine과 tryptophan등의 다른 방향족 아미노산의 첨가 시에는 coenzyme $Q_{10}$ 생산량이 오히려 감소하는 것으로 나타나 tyrosine의 첨가가 coenzyme $Q_{10}$ 역가에 매우 중요함을 확인하였다.

Keywords

References

  1. Stoyanovsky, D. A., A. N. Osipov, P. J. Quinn, and V. E. Kagan (1995), Ubiquinone-dependent recycling of vitamin E radicals by superoxide, Arch. Biochem. Biophys. 323, 345-351
  2. Sarter, B. (2002), Coenzyme QlO and cardiovascular disease : a review, J. Cardiovasc. Nurs. 16, 9-20
  3. Ernster, L. and G. Dallner (1995), Biochemical, physiological and medical aspects of ubiquinone functìon, Biochem. Biophys. Acta. 1271, 195-204 https://doi.org/10.1016/0925-4439(95)00028-3
  4. Lenaz, G. (1998), Quínone specificíty of complex I, Biochem. Biophys. Acta. 1364, 207-221 https://doi.org/10.1016/S0005-2728(98)00028-0
  5. Kawamukai, M. (2002), Biosynthesis, bioproductìon and novel roles of ubiquínone, J. Biosci. Bioeng. 94, 511-517 https://doi.org/10.1016/S1389-1723(02)80188-8
  6. Miksovska, J., M. Schiffer, D. K. Hanson, and P. Sebban (1999), Proton uptake by bacterial reaction centers: The protein complex responds in a similar manner to the reduction of either quinone acceptor, Proc. Natl. Acad. Sci. U.S.A. 96, 14348-14353 https://doi.org/10.1073/pnas.96.25.14348
  7. Nohl, H., L. Gille, and A. V. Kozlov (1999), Critical aspects of the antioxidant function of coenzyme Q in biomembranes, Biofactors 9, 155-161 https://doi.org/10.1002/biof.5520090210
  8. Stocker, R., V. W. Bowry, and B. Frei (1991), Ubiquinol-10 protects human low density lipoprotein more efficient1y against lipid peroxidation than does a-tocopherol, Proc. Natl. Acad. Sci. U.S.A. 88, 1646-1650 https://doi.org/10.1073/pnas.88.5.1646
  9. Jessica, L. B. and J. W. Frost (2001), Microbial synthesis of $\rho$-hydrobenzoic acid from glucose, Biotechnol. Bioeng. 76, 376-390 https://doi.org/10.1002/bit.10160
  10. Herrmann, K. M. (1995), The shikimate pathway as an entry to aromatic secondary metabolism, Plant Physiol. 107, 7-12 https://doi.org/10.1104/pp.107.1.7
  11. Olson, R. (1965), Anabolism of the coenzyme Q family and their biological activities, Federation Proc. 24, 85-92
  12. Szkopinska, A. (2000), Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization, Acta. Biochim. Pol. 47, 469-480
  13. Chaykin, S., J. Law, A. H. Philips, T. T. Tchen, and K Bloch (1958), Phosphorylated intennediates in the synthesis of squalene, Proc. Natl. Acad. Sci. U.S.A. 44, 998-1004 https://doi.org/10.1073/pnas.44.10.998
  14. Rohmer, M., M. Knani, P. Simonin, B. Sutter, and H. Sahm (1993), Isoprenoid biosynthesis in bacteria : a novel pathway for the early steps leading to isopentenyl diphosphate, Biochem. J. 295, 517-524
  15. Takahashi, S., Y. Ogiyama, H. Kusano, H. Shimada, M. Kawamukai, and K. Kadowakii (2006), Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant, FEBS. Lett. 580, 955-956 https://doi.org/10.1016/j.febslet.2006.01.023