Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell

수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제

  • Yi, Ki-Wan (Protein Engineering Team, CreaGene Inc.) ;
  • Ryu, Kang (Protein Engineering Team, CreaGene Inc.)
  • 이기완 (크레아젠(주) 단백질 공학팀) ;
  • 류강 (크레아젠(주) 단백질 공학팀)
  • Published : 2009.02.28

Abstract

Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

glandular kallikrein에 광범위한 상동성을 가지는 인간 전립성 산성 인산 가수분해 효소는, 전립선암의 대표적인 혈청 biomarkers이다. 수지상세포는 유력한 항원 제시 세포이며, 바이러스, 미생물 병원체 및 종양에 대하여 면역 계통에서 강력한 T 세포 응답을 유도할 수 있다. 따라서, 종양 특이적인 항원으로 감작된 수지상세포를 이용한 면역요법은 anti-tumor 면역 유도를 위한 강력한 방법중의 하나이다. 크레아젠(주)에서 개발된 CTP (세포막 투과성 펩티드) 기술은 세포 내로의 높은 침투 효율성을 가지며 핵산이나 단백질과 같은 생체 고분자 물질을 접합하여 세포내로 수송할 수 있는 기술이다(36). 하지만 활성형의 인간 전립성 산성 인산 가수분해 효소는 세포사멸을 매개할 수 있기 때문에, 본 연구진은 항암 치료용 백신으로의 수지상세포 감작을 위해 비활성형 형태의 다중체 (multimer) 항원을 개발하였다. 본 연구에서, 수지상 세포의 감작과 활성화에 안전하고 효율적인 다중체 형태 (multimeric form)의 세포막 투과성 펩티드가 융합된 인간 전립성 산성 인산 가수분해 효소를 얻기 위한 정제공정을 기법을 개발하였고 젤 여과 크로마토그래피, western blot과 Dynamic Light Scattering을 이용하여 확인하였다. 아울러, 정제된 다중체 형태 (multimeric form)의 세포막 투과성 펩티드가 융합된 인간 전립성 산성 인산 가수분해 효소는 수지상 세포의 감작시 세포질 내로 효과적으로 침투되었다. 결과적으로 세포의 사멸의 부작용이 없이 MHC class I 분자를 통해 수지상세포의 표면으로 효과적으로 제시되었다.

Keywords

References

  1. 전립선암의 역학과 자연사, 한국비뇨기종양학회지 2003, 1(1), 6-9
  2. 한국인의 전립선암의 역학적 고찰, 한국비뇨기종양학회지 2004, 2(1), 27-30
  3. Small EJ and Voge1zang NJ (1997), Second-line hormonal therapy for advanced prostate cancer: a shifting paradigm. Variety. J Clin Oncol, 15, 382-8 https://doi.org/10.1200/JCO.1997.15.1.382
  4. Banchereau J and Steinman RM (1998), Dendritic cells and the control of immunity. Nature 392, 245-252 https://doi.org/10.1038/32588
  5. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, and Palucka K (2000), Immunobiology of dendritic cells. Annu Rev lmmunol 18, 767-811 https://doi.org/10.1146/annurev.immunol.18.1.767
  6. Steinman RM and Cohn ZA (1973), Identificaion of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137, 1142-1162 https://doi.org/10.1084/jem.137.5.1142
  7. Young-Woock Noh and Jong-Seok Lim (2006), Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells, lmmune Network, 6(2), 102-110 https://doi.org/10.4110/in.2006.6.2.102
  8. Hilkens CM, Kalinski P, de Boεr M, and Kapsenberg ML (1997), Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T -helper cells toward the Th1 phenotype. Blood 90, 1920-1926
  9. Hyunah Lee, Kwang-Min Choi, Soyoung Baek, Hong-Ghi Lee, and Chul-Won Jung (2004), Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model, lmmune Network, 4(1), 44-52 https://doi.org/10.4110/in.2004.4.1.44
  10. Nouri-Shirazi M, Banchereau J, Fay J, and Palucka K (2000), Dendritic cell based tumor vaccines. lmmunol Lefter 74, 5-10
  11. Whiteside TL and Odoux C (2004), Dendritic cell biology and cancer therapy. Cancer lmmunol lmmunother 53, 240-248 https://doi.org/10.1007/s00262-003-0468-6
  12. Steven P. Balk, Yoo-Joung Ko, and Glenn J. Bubley (2003), Biology of Prostate-Specific Antigεn. J Clin Oncol 21(2), 383-391 https://doi.org/10.1200/JCO.2003.02.083
  13. A. R. O' Connell and C. Stenson-Cox (2007), A more serine way to die: Defining the characteristics of serine protease-mediated cell death cascade. Biochemica et Biophysica Acta 1773(10), 1491-1499 https://doi.org/10.1016/j.bbamcr.2007.08.002
  14. Ronnberg L Vihko P, Sajanti E & Vihko R (1981), Clomiphene citrate administration to nonnogonadotropic subfertile men: Blood honnone changes and activation of acid phosphatase in seminal fluid. Int J Androl 4, 372-378 https://doi.org/10.1111/j.1365-2605.1981.tb00721.x
  15. Hakalahti L, Vihko P, Henttu P, Autio-Hannainen H, Soini Y & Vihko R (1993), Evaluation of PAP and PSA gene expression in prostatic hyperplasia and prostatic carcinoma using Northem blot analysis, in situ hybridization and immunochemical stainings with monoclonal and bispecific antibodies. lnt J Cancer 55, 590-597 https://doi.org/10.1002/ijc.2910550413
  16. Apostol I, Kuciel R, Wasylewska E & Ostrowski WS (1985), Phosphotyrosine as a substrate of acid and alkaline phosphatases. Acta Biochem Pol 32, 187-197
  17. Vihko P, Kurkela R, Porvari K, Herrala A, Lindfors A, Lindqvist Y & Schneider G (1993), Rat acid phosphatase: Overexpression of active secreted enzyme by recombinant baculovirus-infected insect cells, molecular properties and crystallization. Proc Natl Acad Sci USA 90, 799-803 https://doi.org/10.1073/pnas.90.3.799
  18. Wasylewska E, Czubak J & Ostrowski WS (1983), Phosphoprotεin phosphatase activity of human prostate acid phosphatase. Acta Biochim Pol 30, 175-184
  19. Li HC, Chemoff J Chen LB & Kirschonbaum A (1984), A phosphotyrosyl-protein activity associated with acid phosphatase from human prostate gland. Eur J Biochem 138, 45-51 https://doi.org/10.1111/j.1432-1033.1984.tb07879.x
  20. Boissonneault M, Chapdelaine A & Chevalier S (1995), The enhancement by pervanadate of tyrosine phosphorylation on prostatic proteins occurs through the inhibition of membraneassociated tyrosine phosphatase. Mol Cell Biochem 153, 139-144 https://doi.org/10.1007/BF01075929
  21. Tessier S, Chapdelaine A & Chevalier S (1987), Effect of vanadate on protein phosphorylation and on acid phosphatase activity in the canine prostate. Mol Cell Endocrinol 64, 87-94 https://doi.org/10.1016/0303-7207(89)90068-3
  22. Chemoff J (1999), Protein tyrosine phosphatases as negative regulators of mitogenic signaling. J Cell Physiol 180, 173-181 https://doi.org/10.1002/(SICI)1097-4652(199908)180:2<173::AID-JCP5>3.0.CO;2-Y
  23. Li L & Dixon JE (2000), Fonn, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin Immunol 12, 75-84 https://doi.org/10.1006/smim.2000.0209
  24. Woodford-Thomas T A, Rhodes JD & Dixon JE (1992), Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. J Cell Biol 117, 401-414 https://doi.org/10.1083/jcb.117.2.401
  25. Tonks NK & Nee1 BG (1996), From form to function: signaling by protein tyrosine phosphatases. Cell. 87, 365-368 https://doi.org/10.1016/S0092-8674(00)81357-4
  26. Li HC, Chernoff J Chen LB & Kirschonbaum A (1984), A phosphotyrosyl-protein activity associated with acid phosphatase from human prostate gland. Eur J Biochem 138, 45-51 https://doi.org/10.1111/j.1432-1033.1984.tb07879.x
  27. Lin MF & Clinton GM (1986), Human prostatic acid phosphatase has phosphotyrosyl-protein phosphatase activity. Biochem J 235, 351-357
  28. Lin MF & Clinton GM (1988), The epidennal growth factor receptor from prostate cells is dephosphorylated by a prostate-specific phosphotyrosyl phosphatase. Mol Cell Biol 8, 5477-5485
  29. Lin MF & Meng TC (1996). Tyrosine phosphorylation of a 185 kDa phosphoprotein (pp 185) inversely correlated with the cellular activity of human prostatic acid phosphatase. Biochem Biophys Res Comm 226, 206-213 https://doi.org/10.1006/bbrc.1996.1334
  30. Lin MF, Meng TC, Rao PS Chang C, Schonthal AH & Lin FF (1998), Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J Biol Chem 273, 5939-5947 https://doi.org/10.1074/jbc.273.10.5939
  31. Meng TC, Lee MS & Lin MF (2000), Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene 19, 2664-2677 https://doi.org/10.1038/sj.onc.1203576
  32. Luchter-Wasylewska E (2001), Cooperative kinetics of human prostatic acid phosphatase, Biochim Biophys Acta 1548, 257-264 https://doi.org/10.1016/S0167-4838(01)00239-4
  33. Ausubel, F. M., R Brent, R E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K Struhl (2002), Short Protocols in Molecular Biology : A Compendium of Methods from Current Protocols in Molecular Biology, 5th ed. John Wiley & Sons, Inc
  34. Patricia L. Mottram, David Leong, Blessing CrimeenIrwin, Simone Gloster, Sue D. Xiang, Jayesh Meanger, Reena Ghildyal, Nicholas Vardaxis, and Magdalena P1ebanski (2007), Mol. Phannaceutics, 4(1), pp73-84 https://doi.org/10.1021/mp060096p
  35. Vania Manolova, Anna Flace, Monika Bauer, Katrin Schwarz, Philippe Saudan, and Martin F. Bachmarm (2008), Nanoparticles target distinct dendritic cell populations according to their size, European Journal ollmmunology, Vol. 38 Issue 5, Pages 1404-1413 https://doi.org/10.1002/eji.200737984
  36. Daeyou Kima, Choonju Jeon, Jeong-Hwan Kim, Mi-Seon Kim, Cheol-Hee Yoon, In-Soo Choi, Sung-Hoon Kim, and Yong-Soo Bae (2006), Cytoplasmic transduction peptide (CTP): New approach for the delivery of biomolecules into cytoplasm in vitro and in vivo, Experimental Cell Research, Vol. 312, Issue 8, Pages 1277-1288 https://doi.org/10.1016/j.yexcr.2005.12.029