Comparison of cellulolytic enzyme productivities in various semicontinuous culture modes of Trichoderma inhamatum KSJ1

Trichoderma inhamatum KSJ1의 반연속배양 방식에 따른 섬유소분해효소의 생산성 비교

  • Li, Hong-Xian (Dept. of Civil, Earth and Environmental Engineering, Chonnam National University) ;
  • Kim, Seong-Jun (Dept. of Civil, Earth and Environmental Engineering, Chonnam National University)
  • 리홍선 (전남대학교 건설지구환경공학부) ;
  • 김성준 (전남대학교 건설지구환경공학부)
  • Published : 2009.02.28

Abstract

For continuous culture of cellulolytic enzymes production to saccharify food wastes, refill concentration of Mandel's medium for continuous culture was 0.5%, and refill intervals were determined to 12 hours by analysis of COD and total nitrogen concentration after 4-days batch culture in flask level. As a result, amylase and FPase productivities were 3.5 and 1.0 U/L.hr, respectively. In 10 L bioreactor, the batch culture mode was compared with fed-batch, fill-and-draw for continuous production of cellulolytic enzyme. Enzyme productivities were most high at batch culture and followed by fed-batch culture. Amylase and FPase activities were 42.3 and 5.6 U/L.hr at batch culture, and 23.0, 2.8 U/L.hr at fed-batch culture, respectively. As a result, in continuous cultivation of cellulolytic enzymes by T. inhamatum KSJ1, the mode of fed-batch was most effective in 10 L bioreactor.

본 연구에서는 음식물쓰레기를 당화시키기 위해 섬유소분해효소를 효율적으로 배양하고자 먼저 refill하는 멘델배지의 농도를 0.5%로, 새로운 배지의 주입시간을 12시간으로 결정하였다. Flask 레벨에서는 fill-and-draw 방법으로 12시간 단위로 연속배양한 결과, amylase 활성은 300시간까지 1.0 U/mL 내외로 유지되었으며, FPase 활성은 156시간까지 0.40 U/mL 이상으로 유지되었다. 이때의 효소생산성은 amylase 3.49 U/L. hr, FPase 1.02 U/L. hr 이었다. 10 L에서는 batch, fed-batch, fill-and-draw 방법으로 효소를 생산한 결과 batch에서 가장 높은 효소생산성을 나타내었으며, 그다음은 fed-batch 이었다. Batch에서의 효소생산성은 amylase 42.30 U/L. hr, FPase 5.60 U/L. hr, fed-batch에서는 각각 23.03, 2.76 U/L. hr 이었다. 그리하여 T. inhamatum KSJ1을 이용한 섬유소분해효소의 연속배앙에서 10 L 생물반응기에서 fed-batch 빙법이 가장 효율적이었다.

Keywords

References

  1. Bhat, M. K. and S. Bhat (1997), Cellulose degrading enzymes and their potential industrial applications, Biotechnol. Adv. 15(3-4), 583-620 https://doi.org/10.1016/S0734-9750(97)00006-2
  2. Gerber, P. J., J. A. Heitmann, and T. W. Joyce (1997), Purification and characterization of xylanases from Trichoderma, Bioresource Technol. 61(2), 127-140 https://doi.org/10.1016/S0960-8524(97)00052-7
  3. Kulkarni, N., A. Shendye, and M Rao (1999), Molecular and biotechnological aspects of xylanases, FEMS Microbiol. Rev. 23(4), 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  4. Kashyap, D. R., P. K. Vohra, S. Chopra, and R. Tewari (2001), Applications of pectinases in the commercial sector: a review, Bioresource Technol. 77(3), 215-227 https://doi.org/10.1016/S0960-8524(00)00118-8
  5. Lee, K. J. (1976), Enzyamtic hydrolysis of cellulose, Kor. J. Pharmacog. 7, 85-93
  6. Sun, Y. and J. Cheng (2002), Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technol. 83(1), 1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
  7. Sun, T., B. H. Liu, and Z. H. Li (1997), Enhanced cellulase production in fed-batch solid state fermentation of Trichoderma viride SL-1, J. Chem. Tech. Biotechnol. 69, 429-432 https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<429::AID-JCTB732>3.0.CO;2-Q
  8. Bailey, M. J. and L. Viikari (1993), Production of xylanases by Aspergillus fumigatus and Aspergillus oryzae on xylan-based media, World J. Micobiol Biotechnol. 9, 80-84 https://doi.org/10.1007/BF00656523
  9. Bailey M. J, S. Askolin, N. Horhammer, M. Tenkanen, M. Linder, M. Penttila, and T. Nakari-setala. (2002), Process technolo밍cal effects of deletion and amplification of hydrophobins I and n in transfonnants of Trichoderma reesei, Appl Microbiol Biotechnol. 58, 721-727 https://doi.org/10.1007/s00253-002-0966-z
  10. Kim, K. C., S. W. Kim, M. J. Kim, and S. J. Kim (2005), Saccharification of food wastes using cellulolytic and amylolytic enzymes from Trichoderma harzianum FJl and its kinetics, Biotech. Bioprocess. Eng. 10, 52-59 https://doi.org/10.1007/BF02931183
  11. Mandels, M. and E. T. Reese (1960), Induction of cellulase in fungi by cellobiose, J. Bacteriol. 79, 816-826
  12. Thomas, M. W. and K. M. Bhat (1988), Methods for measuring cellulase activities, Methods Enzymol. 160, 87-112 https://doi.org/10.1016/0076-6879(88)60109-1