DOI QR코드

DOI QR Code

3종 광중합개시제를 함유한 실험용 복합레진의 미세누출도

MICROLEAKAGE OF THE EXPERIMENTAL COMPOSITE RESIN WITH THREE COMPONENT PHOTOINITIATOR SYSTEMS

  • 김지훈 (단국대학교 치과대학 치과보존학교실) ;
  • 신동훈 (단국대학교 치과대학 치과보존학교실)
  • Kim, Ji-Hoon (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, College of Dentistry, Dankook University)
  • 발행 : 2009.07.31

초록

현행 복합레진에서 가장 많이 사용되고 있는 광중합개시제의 일종인 camphoroquinone은 중합 효과가 적고 황색을 띠기 때문에 다른 개시제에 대한 연구가 이루어져 왔다. 이에 본 연구에서는 새로운 개시제인 OPPI (p-octyloxy-phenyl-phenyl iodonium hexafluoroantimonate)를 기존의 camphoroquinone, amine과 다양한 비율로 혼합한 다음, barium glass를 첨가한 실험용 복합레진을 제조하여 각 수복재의 미세누출도를 비교, 평가하였다. 총 4종의 단량체를 제조하였으며 camphoroquinone, OPPI, amine의 조성 중량비는 다음과 같다: A군 - 0.5%, 0%, 1% / B군 - 2%, 0.2%, 2% / C군 - 0.2%, 1%, 0.2% / D군 - 1%, 1%, 2%. 이후 평균 입자 크기 1 ${\mu}m$의 3.2% silane 처리된 barium glass를 중량비 78%로 섞어 복합레진을 제조하였다. 총 55개의 소구치에 치경부를 중심으로 원형 와동을 (직경; 근원심 폭경의 2/3, 깊이; 1.5 mm) 형성한 다음, 자가부식형 접착시스템인 Hybrid Bond로 처리하고 4종의 복합레진으로 수복하였다. 연마 후 치아를 섭씨 5도와 55도에서 각기 30초씩 담궈 500회의 열순환 처리하였으며 전기화학적 방법으로 전기 전도성을 2회 (열순환 처리 후, 1주 간격으로 식염수를 교환하며 3개월 보관 후) 측정, 비교하였다. 미세누출도는 시간 경과에 따라 커지는 양상을 보였으며, 열순환 처리 직후 4종 복합레진 사이에 차이를 보이지 않았지만, 3개월 보관 후에는 D군이 가장 적었으며 C군이 가장 큰 미세누출을 보였다. 열순환 자극 직후 차이를 보이지 않았지만, 3개월 보관 후 측정치로 미루어 볼 때, OPPI와 전반적인 중합시스템이 고농도로 함유된 복합레진(D군)과 CQ와 아민만을 사용한 전통적인 복합레진(A군)이 중합개시시스템을 저농도로 함유한 복합레진(C군)에 비해 우수한 밀폐효과를 보였다. 이는 시간의 흐름에 따라 접착계면의 퇴화가 일어났거나 일부 성분이 용해가 되어 나온 것으로 보이며 앞으로 이에 대한 더 많은 연구가 필요할 것으로 사료된다.

This study was done to determine if there is any difference in microleakage between experimental composite resins, in which various proportions of three component photoinitiators (Camphoroquinone, OPPI, Amine) were included. Four kinds of experimental composite resin were made by mixing 3.2% silanated barium glass (78 wt.%, average size; 1 ${\mu}m$) with each monomer system including variously proportioned photoinitiator systems used for photoinitiating BisGMA/BisEMA/TEGDMA monomer blend (37.5:37.5:25 wt.%). The weight percentage of each component were as follows (in sequence Camphoroquinone, OPPI, Amine): Group A - 0.5%, 0%, 1% / Group B - 2%, 0.2%, 2% / Group C - 0.2%, 1%, 0.2% / Group D - 1%, 1%, 2%. Each composite resin was used as a filling material for round class V cavities (diameter: 2/3 of mesiodistal width; depth: 1.5 mm) made on extracted human premolars and they were polymerized using curing light unit (XL 2500, 3M ESPE) for 40 s with an intensity of 600 mW/$cm^2$. Teeth were thermocycled fivehundred times between $50^{\circ}C$and $550^{\circ}C$for 30s at each temperature. Electrical conductivity (${\mu}A$) was recorded two times (just after thermocycling and after three-month storage in saline solution) by electrochemical method. Microleakage scores of each group according to evaluation time were as follows [Group: at first record / at second record; unit (${\mu}A$)]: A: 3.80 (0.69) / 13.22 (4.48), B: 3.42 (1.33) / 18.84 (5.53), C: 4.18 (2.55) / 28.08 (7.75), D: 4.12 (1.86) / 7.41 (3.41). Just after thermocycling, there was no difference in microleakage between groups, however, group C showed the largest score after three-month storage. Although there seems to be no difference in microleakage between groups just after thermocycling, composite resin with highly concentrated initiation system or classical design (Camphoroquinone and Amine system) would be more desirable for minimizing microleakage after three-month storage.

키워드

참고문헌

  1. Stansbury JW. Curing dental resins and composites by photopolymerization. J Esthet Dent 12:300-308, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00239.x
  2. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 20(1):121-131, 1986 https://doi.org/10.1002/jbm.820200111
  3. Ferracane JL, Mitchem JC, Condon JR, Todd R. Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 76:1508-1516, 1997 https://doi.org/10.1177/00220345970760081401
  4. Wataha JC, Hanks CT, Strawn S, Fat GC. Cytotoxicity of components of resins and other dental restorative materials. J Oral Rehab 21:453-462, 1994 https://doi.org/10.1111/j.1365-2842.1994.tb01159.x
  5. Mazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y, Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mat J 14:23-30, 1995 https://doi.org/10.4012/dmj.14.23
  6. Rueggeberg FA, Ergle JW, Lockwood PE. Effect of photinitiator level on properties of a light-cured and post-cured heated model resin system. Dent Mater 13:360-364, 1997 https://doi.org/10.1016/S0109-5641(97)80107-8
  7. Peutzfeldt A, Asmussen E. Influence of ketones on selected mechanical properties. J Dent Res 71:1847-1850, 1992 https://doi.org/10.1177/00220345920710111601
  8. Peutzfeldt A, Asmussen E. In vitro wear, hardness, and conversion of diacetyl-containing resin materials. Dent Mater 12:103-108, 1996 https://doi.org/10.1016/S0109-5641(96)80076-5
  9. Ridtschel RL. Contact allergens in ultraviolet-cured acrylic resin system. Occupational Med 1:301-306, 1986
  10. Cohen SG, Chao HM, Photoreduction of aromatic ketones by amine. Studies of quantum yields and mechanism. J Am Chem Soc 90:165-173, 1968 https://doi.org/10.1021/ja01003a029
  11. Antonucci JM, Venz S. Tertiary amine salts and complexes as chemical and photochemical accelerators. J Dent Res 66:128 Abstr. No. 170, 1987
  12. Puppala R, A. Heged A, Munshi AK, Laser and light cured composite resin restoration : in-vitro comparison of isotope and dye penetration. J Clin Pediatric Dent 20:213-218, 1996
  13. Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resin. Dent Mater 15:120-127, 1999 https://doi.org/10.1016/S0109-5641(99)00021-4
  14. Inano H, Ohba H, Tamaoki B. Photochemical inactivation of human placental estradiol 17 beta-hydrogenase in the presence of 2,3-butandion. J Steroid Biochem 19:1617-1622, 1983 https://doi.org/10.1016/0022-4731(83)90379-5
  15. Eick JD, Kostoryz EL, Rozzi SM, Jacobs DW, Oxman JD, Chappelow CC, Glaros AG, Yourtee DM. In vitro biocompatibility of oxirane/polyol dental composites with promising physical properties. Dent Mater 18:413-421, 2002 https://doi.org/10.1016/S0109-5641(01)00071-9
  16. Labella R, Lambrechts P, Van Meerbeek B. Vanherle G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 15: 128-137, 1999 https://doi.org/10.1016/S0109-5641(99)00022-6
  17. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25:435-440, 1997 https://doi.org/10.1016/S0300-5712(96)00063-2
  18. Braga RR, Ferracane JL. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res 81(2):114-118, 2002 https://doi.org/10.1177/154405910208100206
  19. Ferracane JL, Mitchem JC. Relationship between com-posite contraction stress and leakage in Class V cavities. Am J Dent 16(4):239-243, 2003
  20. Gale MS, Darvell BW, Cheung GS. Three-dimensional reconstruction of microleakage pattern using a sequential grinding technique. J Dent 22(6):370-375, 1994 https://doi.org/10.1016/0300-5712(94)90091-4
  21. Crim GA, Chapman KW. Reducing microleakage in Class V restorations: an in vitro study. Quint Int 25(11):781-785, 1994
  22. Shin DH, Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater (in press), 2009 https://doi.org/10.1016/j.dental.2009.03.004
  23. 구봉주, 신동훈. 법랑질 변연으로 이루어진 복합레진 수복물의 체적과 C-factor가 미세누출에 미치는 영향. 대한치과보존학회지 31(6):452-459, 2006 https://doi.org/10.5395/JKACD.2006.31.6.452
  24. Brannstrom M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 9:57- 68, 1984
  25. Tantbirojn D, Versluis A, Pintado MR, DeLong R, Douglas WH. Tooth deformation patterns in molars after composite restoration. Dent Mater 20:535-542, 2004 https://doi.org/10.1016/j.dental.2003.05.008
  26. 박정원. Nanofilled 복합레진의 잔류응력 비교. 대한치과보존학회지 33(5):457-462, 2008 https://doi.org/10.5395/JKACD.2008.33.5.457
  27. Gladys S, Meerbeer VB, Lambrechts P, Vanherle G. Microleakage of adhesive restorative materials. Am J Dent 14(3):170-176, 1994
  28. Hannig M, Friedrichs C. Comparative in vivo and in vitro investigation of interfacial bond variability. Oper Dent 26(1):3-11, 2001
  29. Jacobsen PH, Von Fraunhofer JA. Assessment of microleakage using a conductimetric technique. J Dent Res 54(1):41-48, 1976
  30. Delivanis PD, Chapman KA. Comparison and reliability of techniques for measuring leakage and marginal penetration. Oral Surg Oral Med Oral Pathol 53:410-416, 1982 https://doi.org/10.1016/0030-4220(82)90444-3
  31. 김창윤, 신동훈. 열순환 횟수에 따른 복합레진의 미세누출. 대한치과보존학회지 32(4):377-384, 2007 https://doi.org/10.5395/JKACD.2007.32.4.377
  32. Mattison GD, Von Fraunhofer JA. Electrochemical microleakage study of endodontic sealer/cements. Oral Surg Oral Med Oral Pathol 55:402-407, 1983 https://doi.org/10.1016/0030-4220(83)90195-0
  33. Iwami Y, Yamamoto H, Ebisu S. A new electrical method for detecting marginal leakage of in vitro resin restorations. J Dent 28:241-247, 2000 https://doi.org/10.1016/S0736-5748(99)00079-9
  34. Nakano Y. A new electrical testing method on marginal leakage of composite resin restorations. Japan J Cons Dent 8:1183-1198, 1985
  35. Frankenberger R, Strobel WO, Lohbauer U, Kramer N, Petschelt A. The effect of six years of water storage on resin composite bonding to human dentin. J Biomed Mater Res B Appl Biomater 69:25-32, 2004 https://doi.org/10.1002/jbm.b.20024
  36. Ferracane JL. Elution of leachable components from composites. J Oral Rehab 21:441-452, 1994 https://doi.org/10.1111/j.1365-2842.1994.tb01158.x

피인용 문헌

  1. Optimal combination of 3-component photoinitiation system to increase the degree of conversion of resin monomers vol.36, pp.4, 2011, https://doi.org/10.5395/JKACD.2011.36.4.313