References
- Amin, G. and H. Verachtert. 1982. Comparative study of ethanol production by immobilized-cell systems using Zymomonas mobilis or Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 14: 59-63 https://doi.org/10.1007/BF00498003
- An, H. J., R. K. Scopes, M. Rodriguez, K. F. Keshav, and L. O. Ingram. 1991. Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173: 5975-5982 https://doi.org/10.1128/jb.173.19.5975-5982.1991
- Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol. Rev. 54: 131-142 https://doi.org/10.1111/j.1574-6968.1988.tb02739.x
- Bringer, S., H. Sahm, and W. Swyzen. 1984. Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotehnol. Bioeng. Symp. 14: 311-319
- Bringer, S., R. K. Finn, and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376-381 https://doi.org/10.1007/BF00408383
- Distefano, T. D., J. M. Gossett, and S. H. Zinder. 1992. Hydrogen as an electron donor for dechlorination of tetachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622-3629
- Gibbs, J. and R. D. DeMoss. 1954. Anaerobic dissimilation of C14-labelled glucose and fructose by Pseudomonas lindneri. J. Biol. Chem. 207: 689-694
-
Hansson, L. and M. H. H
$\ddot{a}$ ggstrom. 1984. Effects of growth conditions on the activies of superoxide dismutase and NADHoxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10: 345-351 https://doi.org/10.1007/BF01626563 - Higuchi, M., Y. Yamamoto, L. B. Poole, M. Shinmada, Y. Sato, N. Takahashi, and Y. Kamio. 1999. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181: 5940-5947
- Hoppner, T. C. and H. W. Doelle. 1983. Purification and kinetic characterization of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur. J. Appl. Microbiol. Biotechnol. 17: 152-157 https://doi.org/10.1007/BF00505880
- Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH. Biotech. Lett. 29: 1277-1280 https://doi.org/10.1007/s10529-007-9385-7
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lopez de Felipe, F., M. J. C. Starrenburg, and J. Hugenholtz. 1997. The role NADH-oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis subsp. lactis MG1363. FEMS Microbiol. Lett. 156: 15-19 https://doi.org/10.1016/S0378-1097(97)00394-7
- Lucey, C. A. and S. Condon. 1986. Active role of oxygen and NADH oxidase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX. J. Bacteriol. 179: 3944-3949
- Nishiyama, Y., V. Massey, Y. Anzai, T. Watanabe, T. Miyaji, T. Uchimura, M. Kozaki, H. Suzuki, and Y. Niimura. 1997. Purification and characterization of Sporolactobacillus inulinus NADH oxidase and its physiological role in aerobic metabolism of the bacterium. J. Ferment. Bioeng. 84: 22-27 https://doi.org/10.1016/S0922-338X(97)82781-X
- Nofsinger, G. W. and R. J. Bothast. 1981. Ethanol production by Zymomonas mobilis and Saccharomyces uvarum on aflatoxincontaminated and ammonia-detoxified corn. Can. J. Microbiol. 27: 162-167 https://doi.org/10.1139/m81-026
- Osman, Y. A. and L. O. Ingram. 1987. Zymomonas mobilis mutants with an increased rate of alcohol production. Appl. Environ. Microbiol. 53: 1425-1432
- Ostovar, K. and P. G. Keeney. 1973. Isolation and characterization of microorganisms involved in the fermentation of Trinidad's cacao beans. J. Food Sci. 38: 611-617 https://doi.org/10.1111/j.1365-2621.1973.tb02826.x
- Pankova, L. M., Y. E. Shvinka, M. E. Beker, and E. E. Slava. 1985. Effect of aeration on Zymomonas mobilis metabolism. Mikrobiologiya 54: 141-145
- Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
- Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61
- Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
- Park, D. H., M. Laiveniek, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-1917
- Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 https://doi.org/10.1023/A:1005674107841
- Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
- Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
- Rogers, P. L., K. J. Lee, M. L. Skotnicki, and D. E. Tribe. 1982. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23: 37-84
- Ruiz-Argueso, T. and A. Rodriguez-Navarro. 1975. Microbiology of ripening honey. Appl. Microbiol. 30: 893-896
- Sahm, H., S. Bringer-Meyer, and G. Sprenger. 1992. The genus Zymomonas, pp. 2287-2301. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes, Second Edition. Springer-Verlag, New York
- Scope, R. K. 1984. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-Keto-D-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis. Anal. Biochem. 136: 530-534 https://doi.org/10.1016/0003-2697(84)90257-4
- Scopes, R. K. and K. Griffiths-Smith. 1986. Fermentation capabilities of Zymomonas mobilis glycolytic enzymes. Biotechnol. Lett. 8: 653-656 https://doi.org/10.1007/BF01025976
- Teysset, M., F. de la Torre, and J. R. Garel. 2000. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: Involvement of an NADH oxidase in oxidative stress. Appl. Environ. Microbiol. 66: 262-267 https://doi.org/10.1128/AEM.66.1.262-267.2000
- Wecker, M. S. A. and R. R. Zall. 1987. Production of acetaldehyde by Zymomonas mobilis. Appl. Environ. Microbiol. 53: 2815-2820
Cited by
- Improvement of Ethanol Production by Electrochemical Redox Combination of Zymomonas mobilis and Saccharomyces cerevisiae vol.20, pp.1, 2009, https://doi.org/10.4014/jmb.0904.04029
-
Enrichment of
$CO_2$ -Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment vol.21, pp.6, 2009, https://doi.org/10.4014/jmb.1101.01032 - Effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037 vol.78, pp.3, 2009, https://doi.org/10.1080/09168451.2014.882743
- Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars vol.9, pp.None, 2009, https://doi.org/10.1186/s13068-016-0606-y
- Electro-Fermentation in Aid of Bioenergy and Biopolymers vol.11, pp.2, 2009, https://doi.org/10.3390/en11020343
- Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2 vol.18, pp.None, 2009, https://doi.org/10.1186/s12934-019-1067-3
- Potential of Zymomonas mobilis as an electricity producer in ethanol production vol.13, pp.None, 2020, https://doi.org/10.1186/s13068-020-01672-5