DOI QR코드

DOI QR Code

Microbial Community Structure in Hexadecane- and Naphthalene-Enriched Gas Station Soil

  • Baek, Kyung-Hwa (Environmental Biotechnology Research Center, KRIBB) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, KRIBB)
  • Published : 2009.07.31

Abstract

Shifts in the activity and diversity of microbes involved in aliphatic and aromatic hydrocarbon degradation in contaminated soil were investigated. Subsurface soil was collected from a gas station that had been abandoned since 1995 owing to ground subsidence. The total petroleum hydrocarbon content of the sample was approximately 2,100 mg/kg, and that of the soil below a gas pump was over 23,000 mg/kg. Enrichment cultures were grown in mineral medium that contained hexadecane (H) or naphthalene (N) at a concentration of 200 mg/l. In the Henrichment culture, a real-time PCR assay revealed that the 16S rRNA gene copy number increased from $1.2{\times}10^5$to $8.6{\times}10^6$with no lag phase, representing an approximately 70-fold increase. In the N-enrichment culture, the 16S rRNA copy number increased about 13-fold after 48 h, from $6.3{\times}10^4$to $8.3{\times}10^5$. Microbial communities in the enrichment cultures were studied by denaturing gradient gel electrophoresis and by analysis of 16S rRNA gene libraries. Before the addition of hydrocarbons, the gas station soil contained primarily Alpha- and Gammaproteobacteria. During growth in the H-enrichment culture, the contribution of Bacteriodetes to the microbial community increased significantly. On the other hand, during N-enrichment, the Betaproteobacteria population increased conspicuously. These results suggest that specific phylotypes of bacteria were associated with the degradation of each hydrocarbon.

Keywords

References

  1. Baek, K. H., B. D. Yoon, B. H. Kim, D. H. Cho, I. S. Lee, H. M. Oh, and H. S. Kim. 2007. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J. Microbiol. Biotechnol. 17: 67-73
  2. Bordenave, S., M. S. Goni-Urriza, P. Caumette, and R. Duran. 2007. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097 https://doi.org/10.1128/AEM.01352-07
  3. Cheung, P. and B. K. Kinkle. 2001. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67: 2222-2229 https://doi.org/10.1128/AEM.67.5.2222-2229.2001
  4. Dionisi, H. M., C. S. Chewning, K. H. Morgan, F. Menn, J. P. Easter, and G. S. Sayler. 2004. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl. Environ. Microbiol. 70: 3988-3995 https://doi.org/10.1128/AEM.70.7.3988-3995.2004
  5. Evans, F. F., A. S. Rosado, G. V. Sebastian, R. C. Casella, P. Machado, C. Holmstrom, S. Kjelleberg, J. D. Elsas, and L. Seldin. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305 https://doi.org/10.1016/j.femsec.2004.04.007
  6. Kang, H., S. Y. Hwang, E. Kim, Y. S. Kim, S. K. Kim, S. W. Kim, C. E. Cerniglia, K. L. Shuttleworth, and G. J. Zylstra. 2003. Degradation of phenanthrene and naphthalene by a Burkholderia species. Can. J. Microbiol. 49: 139-144 https://doi.org/10.1139/w03-009
  7. Kaplan, C. W. and C. L. Kitts. 2004. Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol. 70: 1777-1786 https://doi.org/10.1128/AEM.70.3.1777-1786.2004
  8. MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
  9. Margesin, R., D. Labbe, F. Shinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085-3092 https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  10. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  11. Ogino, A., H. Koshikawa, T. Nakahara, and H. Uchiyama. 2001. Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J. Appl. Microbiol. 91: 625-635 https://doi.org/10.1046/j.1365-2672.2001.01424.x
  12. Popp, N., M. Schlomann, and M. Mau. 2006. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152: 3291-3304 https://doi.org/10.1099/mic.0.29054-0
  13. Ringerlberg, D. B., J. W. Talley, E. J. Perkins, S. G. Tucker, R. G. Luthy, E. J. Bouwer, and H. L. Fredrickson. 2001. Succession of phenotypic, genotypic and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl. Environ. Microbiol. 67: 1542-1550 https://doi.org/10.1128/AEM.67.4.1542-1550.2001
  14. Riser-Roberts, E. 1992. Bioremediation of Petroleum Contaminated Sites, pp. 35-57. CRC Press, New York
  15. Roling, W. F., M. G. Milner, M. Jones, K. Lee, F. Daniel, R. J. P. Swannell, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537-5548 https://doi.org/10.1128/AEM.68.11.5537-5548.2002
  16. Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL
  17. Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688 https://doi.org/10.1038/163688a0
  18. Smith, J. M., S. J. Green, C. A. Kelly, L. Prufert-Bebout, and B. M. Bebout. 2008. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ. Microbiol. 10: 386-394 https://doi.org/10.1111/j.1462-2920.2007.01459.x
  19. Stackebrandt, E. and W. Liesack. 1993. Nucleic acids and classification, pp. 152-189. In M. Goodfellow and A. G. O'Donnell(eds.), Handbook of New Bacterial Systematics. Academic Press, London
  20. Vinas, M., J. Sabate, M. H. Espuny, and A. M. Solanas. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71: 7008-7018 https://doi.org/10.1128/AEM.71.11.7008-7018.2005
  21. Watanabe, K., H. Furamata, and S. Harayama. 2002. Understanding the diversity in catabolic potential of microorganism for the development of bioremediation strategies. Antonie. Van Leeuwenhoek. 81: 655-663 https://doi.org/10.1023/A:1020534328100
  22. Watts, J. E., Q. Wu, S. B. Schreier, H. D. May, and K. R. Sowers. 2001. Comparative analysis of polychlorinated biphenyldechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ. Microbiol. 3: 710-719 https://doi.org/10.1046/j.1462-2920.2001.00247.x
  23. Whyte, L. G., L. Bourbonniere, and C. W. Greer. 1997. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. Environ. Microbiol. 63: 3719-3723
  24. Zylstra, G. J. and E. Kim. 1997. Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J. Ind. Microbiol. Biotech. 19: 408-414 https://doi.org/10.1038/sj.jim.2900475

Cited by

  1. High-throughput screening of microbial adaptation to environmental stress vol.85, pp.2, 2009, https://doi.org/10.1016/j.mimet.2011.01.028