Influence of Methylcellulose on Properties of Wheat Gliadin Film Cast from Aqueous Ethanol

  • Song, Yihu (Department of Polymer Science and Engineering, Zhejiang University) ;
  • Li, Lingfang (Department of Polymer Science and Engineering, Zhejiang University) ;
  • Zheng, Qiang (Department of Polymer Science and Engineering, Zhejiang University)
  • Published : 2009.08.31

Abstract

Present work was focused on the influence of methylcellulose (MC) on steady rheology of wheat gliadin solution and the properties of glycerol plasticized gliadin films. The presence of MC below 0.99 wt% improved viscosity and flow activation energy of the 10 wt% gliadin solution significantly. In the casting films containing 0.2 g glycerol/g dry protein, the MC component aggregated in the gliadin matrix. The blend films containing less than 7.7 wt% MC exhibited higher Young's modulus (E) and tensile strength (${\sigma}_b$) and lower elongation at break (${\epsilon}_b$) in comparison with the pure gliadin film, which was related to the intermolecular interaction between MC and gliadins, the brittle fracture of the aggregated MC component, and the increase in glass transition temperature ($T_g$) of the gliadin phase. Increasing MC content led to a slight increase in water vapor permeability (WVP) without significant influence on the moisture absorption (MA).

Keywords

References

  1. Chabba S, Matthews GF, Netravali AN. 'Green' composites using cross-linked soy flour and flax yarns. Green Chem. 7: 576-581 (2005) https://doi.org/10.1039/b410817e
  2. Gennadios A, Weller CL, Testin RF. Temperature effect on oxygen permeability of edible protein-based films. J. Food Sci. 58: 212-214, 219 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb03247.x
  3. Fido RJ, Bekes F, Gras PW, Tatham AS. Effects of $\alpha$-, $\beta$-, $\gamma$-, and $\omega$- gliadins on the dough mixing properties of wheat flour. J. Cereal Sci. 26: 271-277 (1997) https://doi.org/10.1006/jcrs.1997.0138
  4. Wieser H. Chemistry of gluten proteins. Food Microbiol. 24: 115-119 (2007) https://doi.org/10.1016/j.fm.2006.07.004
  5. Hernandez-Munoz P, Villalobos R, Chiralt A. Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. Food Hydrocolloid 18: 647-654 (2004) https://doi.org/10.1016/j.foodhyd.2003.11.002
  6. Herald TJ, Gnanasambandam R, McGuire BH, Hachmeister KA. Degradable wheat gluten films: Preparation, properties, and applications. J. Food Sci. 60: 1147-1156 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb06311.x
  7. Gao C, Stading M, Wellner N, Parker ML, Noel TR, Mills ENC, Belton PS. Plasticization of a protein-based film by glycerol: A spectroscopic, mechanical, and thermal study. J. Agr. Food Chem. 54: 4611-4616 (2006) https://doi.org/10.1021/jf060611w
  8. Sanchez AC, Popineau Y, Mangavel C, Larre C, Gueguen J. Effect of different plasticizers on the mechanical and surface properties of wheat gliadin films. J. Agr. Food Chem. 46: 4539-4544 (1998) https://doi.org/10.1021/jf980375s
  9. Hernandez-Munoz P, Kanavouras A, Ng PKW, Gavara R. Development and characterization of biodegradable films made from wheat gluten protein fractions. J. Agr. Food Chem. 51: 7647-7654 (2003) https://doi.org/10.1021/jf034646x
  10. John J, Bhattacharya M. Properties of reactively blended soy protein and modified polyesters. Polym. Int. 48: 1165-1172 (1999) https://doi.org/10.1002/(SICI)1097-0126(199911)48:11<1165::AID-PI286>3.0.CO;2-L
  11. Hernandez-Munoz P, Kanavouras A, Lagaron JM, Gavara R. Development and characterization of films based on chemically cross-linked gliadins. J. Agr. Food Chem. 53: 8216-8223 (2005) https://doi.org/10.1021/jf050952u
  12. Hernandez-Munoz P, Kanavouras A, Villalobos R, Chiralt A. Characterization of biodegradable films obtained from cysteinemediated polymerized gliadins. J. Agr. Food Chem. 52: 7897-7904 (2004) https://doi.org/10.1021/jf0491613
  13. Debeaufort F, Voilley A. Methylcellulose-based edible films and coatings. 2. Mechanical and thermal properties as a function of plasticizer content. J. Agr. Food Chem. 45: 685-689 (1997) https://doi.org/10.1021/jf9606621
  14. Donhowe IG, Fennema O. The effects of plasticizers on cristallinity, permeability, and mechanical properties of methylcellulose films. J. Food Process. Pres. 17: 247-257 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00729.x
  15. Park HJ, Weller CL, Vergano PJ, Testin RF. Permeability and mechanical-properties of cellulose-based edible films. J. Food Sci. 58: 1361-1364 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06183.x
  16. Chinnan MS, Park HJ. Effect of plasticizer level and temperature on water vapor transmission of cellulose-based edible films. J. Food Process Eng. 18: 417-429 (1995) https://doi.org/10.1111/j.1745-4530.1995.tb00375.x
  17. Kamper SL, Fennema O. Water-vapor permeability of edible bilayer films. J. Food Sci. 49: 1478-1481 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12825.x
  18. Koelsch CM, Labuza TP. Functional, physical, and morphological properties of methylcellulose and fatty acid-based edible barriers. LWT-Food Sci. Technol. 25: 404-411 (1992)
  19. Kester JJ, Fennema O. An edible film of lipids and cellulose ethersbarrier properties to moisture vapor transmission and structural evaluation. J. Food Sci. 54: 1383-1389 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb05118.x
  20. Erdohan ZO, Turhan KN. Barrier and mechanical properties of methyicellulose-whey protein films. Packag. Technol. Sci. 18: 295-302 (2005) https://doi.org/10.1002/pts.700
  21. Turhan KN, Sancak ZOE, Ayana B, Erdogdu F. Optimization of glycerol effect on the mechanical properties and water vapor permeability of whey protein-methylcellulose films. J. Food Process Eng. 30: 485-500 (2007) https://doi.org/10.1111/j.1745-4530.2007.00135.x
  22. Coughlan K, Shaw NB, Kerry JF, Kerry JP. Combined effects of proteins and polysaccharides on physical properties of whey protein concentrate-based edible films. J. Food Sci. 69: E271-E275 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb10997.x
  23. Park HJ, Chinnan MS. Gas and water vapour barrier properties of edible films from protein and cellulosic materials. J. Food Eng. 25: 497-507 (1995) https://doi.org/10.1016/0260-8774(94)00029-9
  24. Park SK, Bae DH. Antimicrobial properties of wheat glutenchitosan composite film in intermediate-moisture food systems. Food Sci. Biotechnol. 15: 133-137 (2006)
  25. Fakhouri FM, Tanada-Palmu PS, Grosso CRF. Characterization of composite biofilms of wheat gluten and cellulose acetate phthalate. Braz. J. Chem. Eng. 21: 261-264 (2004) https://doi.org/10.1590/S0104-66322004000200016
  26. Turgeon SL, Beaulieu M, Schmitt C, Sanchez C. Proteinpolysaccharide interactions: Phase-ordering kinetics, thermodynamic, and structural aspects. Curr. Opin. Colloid In. 8: 401-414 (2003) https://doi.org/10.1016/S1359-0294(03)00093-1
  27. Turgeon SL, Beaulieu M. Improvement and modification of whey protein gel texture using polysaccharides. Food Hydrocolloid 15: 583-591 (2001) https://doi.org/10.1016/S0268-005X(01)00064-9
  28. ASTM. Standard test methods for water vapour transmission of materials. E96-80. In: ASTM Annual Book of American Standard Testing Methods. American Standard Testing Materials, Philadelphia, PA, USA (1983)
  29. Letendre M, D'Aprano G, Lacroix M, Salmieri S, St-Gelais D. Physicochemical properties and bacterial resistance of biodegradable milk protein films containing agar and pectin. J. Agr. Food Chem. 50: 6017-6022 (2002) https://doi.org/10.1021/jf011688h
  30. Sun S, Song Y, Zheng Q. Rheological behavior of wheat gliadins in 50%(v/v) aqueous propanol. J. Food Eng. 90: 207-211 (2009) https://doi.org/10.1016/j.jfoodeng.2008.06.024
  31. Moharram MA, Abd-El-Nour KN. Infrared spectra and dielectric properties of thermally treated soybean proteins. Polym. Degrad. Stabil. 45: 429-434 (1994) https://doi.org/10.1016/0141-3910(94)90214-3
  32. Robertson GH, Gregorski KS, Cao TK. Changes in secondary protein structures during mixing development of high absorption (90%) flour and water mixtures. Cereal Chem. 83: 136-142 (2006) https://doi.org/10.1094/CC-83-0136
  33. Banerjee R, Chen H. Functional properties of edible films using whey protein concentrate. J. Dairy Sci. 78: 1673-1683 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76792-3
  34. Turhan KN, Sahbaz F. Water vapor permeability, tensile properties, and solubility of methylcellulose-based edible films. J. Food Eng. 61: 459-466 (2004) https://doi.org/10.1016/S0260-8774(03)00155-9
  35. Sun S, Song Y, Zheng Q. Morphologies and properties of thermomolded biodegradable plastics based on glycerol-plasticized wheat gluten. Food Hydrocolloid 21: 1005-1013 (2007) https://doi.org/10.1016/j.foodhyd.2006.03.004
  36. Cherian G, Gennadios A, Weller C, Chinachoti P. Themomechanical behavior of wheat gluten films: Effect of sucrose, glycerin, and sorbitol. Cereal Chem. 72: 1-6 (1995)
  37. Noel TR, Parker R, Ring SR, Tatham AS. The glass-transition behaviour of wheat gluten proteins. Int. J. Biol. Macromol. 17: 81-85 (1995) https://doi.org/10.1016/0141-8130(95)93521-X
  38. Ahmed J, Ramaswamy HS, Raghavan VGS. Dynamic viscoelastic, calorimetric, and dielectric characteristics of wheat protein isolates. J. Cereal Sci. 47: 417-428 (2008) https://doi.org/10.1016/j.jcs.2007.05.013
  39. Leon A, Rosell CM, de Barber CB. A differential scanning calorimetry study of wheat proteins. Eur. Food Res. Technol. 217: 13-16 (2003) https://doi.org/10.1007/s00217-003-0699-y
  40. Debeaufort F, Voilley A. Aroma compound and water vapor permeability of edible films and polymeric packagings. J. Agr. Food Chem. 42: 2071-2075 (1994)
  41. Gounga ME, Xu SY, Wang Z. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio, and pullulan addition in film formation. J. Food Eng. 83: 521-530 (2007) https://doi.org/10.1016/j.jfoodeng.2007.04.008
  42. Hernandez-Munoz P, Lopez-Rubio A, Del-Valle V, Almenar E, Gavara R. Mechanical and water barrier properties of glutenin films influenced by storage time. J. Agr. Food Chem. 52: 79-83 (2004) https://doi.org/10.1021/jf034763s
  43. Hernandez-Munoz P, Villalobos R, Chiralt A. Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloid 18: 403-411 (2004) https://doi.org/10.1016/S0268-005X(03)00128-0
  44. Song Y, Zheng Q. Structure and properties of methylcellulose microfiber reinforced wheat gluten based green composites. Ind. Crop. Prod. 29: 446-454 (2009) https://doi.org/10.1016/j.indcrop.2008.09.002