Isolation and Characterization of Chondroitin Sulfates from the Byproducts of Marine Organisms

  • Im, A-Rang (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Sim, Joon-Soo (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Park, You-Mie (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Hahn, Bum-Soo (National Academy of Agricultural Science, Rural Development Administration) ;
  • Toida, Toshihiko (Graduate School of Pharmaceutical Sciences, Chiba University) ;
  • Kim, Yeong-Shik (Natural Products Research Institute, College of Pharmacy, Seoul National University)
  • Published : 2009.08.31

Abstract

By-products of marine organisms including salmon, skate, flatfish, and yellow goosefish were investigated to search for new source of chondroitin sulfate (CS). Agarose gel electrophoresis with chondroitinase depolymerization showed that purified chondroitin sulfate did not contain any other glycosaminoglycans. 1H-nuclear magnetic resonance (NMR) spectra were acquired to confirm the structure and purity. The average molecular weight ranging from 22 to 64 kDa was determined by high performance size exclusion chromatography. Disaccharide compositions and purities were determined by strong anion exchange-high performance liquid chromatography (SAX-HPLC) after chondroitinase ABC depolymerization. SAX-HPLC data exhibited that the purity was from $81.7{\pm}1.3$ to $114.2{\pm}2.5%$ and the yield was from 1.3 to 12.5%. All analytical results indicate that salmon cartilage, skate cartilage, and yellow goosefish bone could be promising sources of CS to substitute shark cartilage CS in commercial neutraceuticals.

Keywords

References

  1. Volpi N. Analytical aspects of pharmaceutical grade chondroitin sulfates. J. Pharm. Sci. 96: 3168-3180 (2007) https://doi.org/10.1002/jps.20997
  2. James LF. Funderburgh, keratan sulfate: Structure, biosynthesis, and function. Glycobiology 10: 951-958 (2000) https://doi.org/10.1093/glycob/10.10.951
  3. Kim YS, Jo YY, Chang IM, Toida T, Park Y, Linhardt RJ. A new glycosaminoglycan from the giant African snail Achatina fulica. J. Biol. Chem. 271: 11750-11755 (1996) https://doi.org/10.1074/jbc.271.20.11750
  4. Linhardt RJ, Toida T. Role of glycosaminoglycans in cellular communication. Accounts Chem. Res. 37: 431-438 (2004) https://doi.org/10.1021/ar030138x
  5. Handley CJ, Samiric T, Ilic MZ. Structure, metabolism, and tissue roles of chondroitin sulfate proteoglycans. Adv. Pharmacol. 53: 219- 232 (2006) https://doi.org/10.1016/S1054-3589(05)53010-2
  6. Matsui F, Oohira A. Proteoglycans and injury of the central nervous system. Congenit. Anom. Japanese Teratology Society, Japan 44: 181-188 (2004) https://doi.org/10.1111/j.1741-4520.2004.00038.x
  7. Morgenstern DA, Asher RA, Fawcett JW. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 137: 313-332 (2002) https://doi.org/10.1016/S0079-6123(02)37024-9
  8. Uchimura K, Kadomatsu K, Nishimura H, Muramatsu H, Nakamura E, Kurosawa N, Habuchi O, El-Fasakhany FM, Yoshikai Y, Muramatsu T. Functional analysis of the chondroitin 6-sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates. J. Biol. Chem. 277: 1443-1450 (2002) https://doi.org/10.1074/jbc.M104719200
  9. Snow DM, Atkinson PB, Hassinger TD, Letourneau PC, Kater SB. Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons. Dev. Biol. 166: 87-100 (1994) https://doi.org/10.1006/dbio.1994.1298
  10. Pecly IM, Melo-Filho NM, Mourao PA. Effects of molecular size and chemical structure on renal and hepatic removal of exogenously administered chondroitin sulfate in rats. Biochim. Biophys. Acta 1760: 865-876 (2006) https://doi.org/10.1016/j.bbagen.2005.11.009
  11. Sakai S, Akiyama H, Harikai N, Toyoda H, Toida T, Maitani T, Imanari T. Effect of chondroitin sulfate on murine splenocytes sensitized with ovalbumin. Immunol. Lett. 84: 211-216 (2002) https://doi.org/10.1016/S0165-2478(02)00181-5
  12. Gilbert ME, Kirker KR, Gray SD, Ward PD, Szakacs JG, Prestwich GD, Orlandi RR. Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114: 1406-1409 (2004) https://doi.org/10.1097/00005537-200408000-00017
  13. Moon LD, Asher RA, Fawcett JW. Limited growth of severed CNS axons after treatment of adult rat brain with hyaluronidase. J. Neurosci. Res. 71: 23-37 (2003) https://doi.org/10.1002/jnr.10449
  14. Petersen F, Bock L, Flad HD, Brandt E. A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation. J. Immunol. 161: 4347-4355 (1998)
  15. Kokenyesi R. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix. J. Cell. Biochem. 83: 259-270 (2001) https://doi.org/10.1002/jcb.1230
  16. Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, Mitani S, Sugahara K, Nomura K. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423: 443-448 (2003) https://doi.org/10.1038/nature01635
  17. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13: 612-620 (2003) https://doi.org/10.1016/j.sbi.2003.09.011
  18. Angermann P. Glucosamine and chondroitin sulfate in the treatment of arthritis. Ugeskrit Laeger 165: 451-454 (2003)
  19. Ernst E. Glucosamine and chondroitin sulfate for knee osteoarthritis. New Engl. J. Med. 354: 2184-2185 (2006) https://doi.org/10.1056/NEJMc060829
  20. Hungerford DS, Jones LC. Glucosamine and chondroitin sulfate are effective in the management of osteoarthritis. J. Arthroplasty 18: 5-9 (2003) https://doi.org/10.1054/arth.2003.50067
  21. Cassaro CM, Dietrich CP. Distribution of sulfated mucopolysaccharides in invertebrates. J. Biol. Chem. 252: 2254-2261 (1977)
  22. Lamari FN, Theocharis AD, Asimakopoulou AP, Malavaki CJ, Karamanos NK. Metabolism and biochemical/physiological roles of chondroitin sulfates: Analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed. Chromatogr. 20: 539-550 (2006) https://doi.org/10.1002/bmc.669
  23. Luo XM, Fosmire GJ, Leach RM Jr. Chicken keel cartilage as a source of chondroitin sulfate. Poultry Sci. 81: 1086-1089 (2002) https://doi.org/10.1093/ps/81.7.1086
  24. Partridge SM. Chondroitin sulfate-protein of bovine cartilage. Fed. Proc. 25: 994-996 (1966)
  25. Kinoshita A, Yamada S, Haslam SM, Morris HR, Dell A, Sugahara K. Isolation and structural determination of novel sulfated hexasaccharides from squid cartilage chondroitin sulfate E that exhibits neuroregulatory activites. Biochemistry 40: 12654-12655 (2001) https://doi.org/10.1021/bi015577n
  26. Falshaw R, Hubl U, Ofman D, Slim GC, Amjad Tariq M, Watt DK, Yorke SC. Comparison of the glycosaminoglycans isolated from the skin and head cartilage of Gould's arrow squid (Nototodarus gouldi). Carbohyd. Polym. 41: 357-364 (2000) https://doi.org/10.1016/S0144-8617(99)00103-4
  27. Sugahara K, Tanaka Y, Yamada S, Seno N, Kitagawa H, Haslam SM, Morris HR, Dell A. Novel sulfated oligosaccharides containing 3-O-sulfated glucuronic acid from king crab cartilage chondroitin sulfate K. Unexpected degradation by chondroitinase ABC. J. Biol. Chem. 271: 26745-26754 (1996) https://doi.org/10.1074/jbc.271.43.26745
  28. Sim JS, Jun GJ, Toida T, Cho SY, Choi DW, Chang SY, Linhardt RJ, Kim YS. Quantitative analysis of chondroitin sulfate in raw materials, ophthalmic solutions, soft capsules, and liquid preparations. J. Chromatogr. B 818: 133-139 (2005) https://doi.org/10.1016/j.jchromb.2004.12.015
  29. Fujita R, Matsubara Y, Maruyama T, Tsuji J. On the toxicity of sodium chondroitin sulfate prepared from whale cartilage. Zasshi. Tokyo Ika. Daigaku. J. Tokyo Women's Medical College, Japan 23: 211-215 (1965)
  30. Seno N, Meyer K. Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim. Biophys. Acta 78: 258-264 (1963) https://doi.org/10.1016/0006-3002(63)91636-6
  31. Lignot B, Lahogue V, Bourseau P. Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J. Biotechnol. 103: 281-284 (2003) https://doi.org/10.1016/S0168-1656(03)00139-1
  32. Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr, Berenson GS. Glycosaminoglycans from squid skin. Comp. Biochem. Physiol. 28: 169-176 (1969) https://doi.org/10.1016/0010-406X(69)91331-0
  33. Majima M, Takagaki T, Sudo S, Yoshihara S, Kudo Y, Yamagishi S. Effect of proteoglycan on experimental colitis. Int. Congr. Ser. 1223: 221-224 (2001) https://doi.org/10.1016/S0531-5131(01)00479-4
  34. Kitagawa H, Tanaka Y, Yamada S, Seno N, Haslam SM, Morris HR, Dell A, Sugahara K. A novel pentasaccharide sequence GlcA (3-sulfate)(1-3)GalNAc(4-sulfate)($\beta$1-4)(Fuc $\alpha$1-3)GlcA($\beta$1-3)GalNAc (4-sulfate) in the oligosaccharides isolated from king crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry 36: 3998-4008 (1997) https://doi.org/10.1021/bi962740j
  35. Vieira RP, Mourao PA. Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. J. Biol. Chem. 263: 18176-18183 (1988)
  36. Volpi N. 'Fast moving' and 'slow moving' heparins, dermatan sulfate, and chondroitin sulfate: Qualitative and quantitative analysis by agarose-gel electrophoresis. Carbohyd. Res. 247: 263-278 (1993) https://doi.org/10.1016/0008-6215(93)84259-9
  37. Sim JS, Im AR, Cho SM, Jang HJ, Jo JH, Kim YS. Evaluation of chondroitin sulfate in shark cartilage powder as a dietary supplement: Raw materials and finished products. Food Chem. 101: 532-539 (2007) https://doi.org/10.1016/j.foodchem.2006.02.011
  38. Cho SY, Sim JS, Jeong CS, Chang SY, Choi DW, Toida T, Kim YS. Effects of low molecular weight chondroitin sulfate on type II collagen-induced arthritis in DBA/1J mice. Biol. Pharm. Bull. 27: 47-51 (2004) https://doi.org/10.1248/bpb.27.47
  39. Medeiros GF, Mendes A, Castro RAB, Bau EC, Nader HB, Dietrich CP. Distribution of sulfated glycosminoglycans in the animal kingdom: Widespread occurrence of heparin-like compounds in invertebrates. Biochim. Biophys. Acta 1475: 287-294 (2000) https://doi.org/10.1016/S0304-4165(00)00079-9
  40. Mucci A, Schenetti L, Volpi N. $^{1}H$ and $^{13}C$ nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohyd. Res. 41: 37-45 (2000) https://doi.org/10.1016/S0144-8617(99)00075-2
  41. Sakai S, Otake E, Toida T, Goda Y. Identification of the origin of chondroitin sulfate in 'health foods'. Chem. Pharm. Bull. 55: 299- 303 (2007) https://doi.org/10.1248/cpb.55.299
  42. Nader HB, Ferreira TM, Paiva JF, Medeiros MG, Jeronimo SM, Paiva VM, Dietrich CP. Isolation and structural studies of heparan sulfates and chondroitin sulfates from three species of molluscs. J. Biol. Chem. 259: 1431-1435 (1984)
  43. Kariya Y, Watabe S, Hashimoto K, Yoshida K. Occurrence of chondroitin sulfate E in glycosaminoglycan isolated from the body wall of sea cucumber Stichopus japonicus. J. Biol. Chem. 265: 5081-5085 (1990)
  44. Anno K, Kawai Y, Seno N. Isolation of chondroitin from squid skin. Biochim. Biophys. Acta 83: 348-349 (1964)