Copolymerization of L-Lactide and ${\varepsilon}$-Caprolactone in Supercritical Fluid

  • Prabowo, Benedictus (Biomaterials Research Center, Korea Institute of Science and Technology, Department of Chemistry, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Korea University) ;
  • Kim, Soo-Hyun (Biomaterials Research Center, Korea Institute of Science and Technology)
  • Published : 2009.08.25

Abstract

Copolymerization of L-lactide and s-caprolactone initiated by tin (II) octoate (Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane (R22) with varying reaction conditions (time and temperature) and amounts of monomer and catalyst, under a pressure of 250 bar. The optimum conditions were a reaction time of 10 h and a temperature of 130 $^{\circ}C$, which is similar to the temperature used in bulk copolymerization system. The conversion increased from 56% to 76% by increasing the reaction time from 1 to 10 h. The molecular weight also increased to 75,900 g.mol$^{-1}$ over the same period, while the increased monomer concentration resulted in a high molecular weight of 86,400 g.mol$^{-1}$ and a monomer conversion of 84%. Raising the reaction temperature from 90 to 130 $^{\circ}C$ increased the monomer conversion as well as the poly-L-lactide-co-${\varepsilon}$-caprolactone (PLCL) molecular weight. The variation on the stannous octoate catalyst suggested that less catalyst would decrease the caprolactone content of the polymer.

Keywords

References

  1. B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, and S.W. Kim, J. Control. Release, 62, 109 (1999) https://doi.org/10.1016/S0168-3659(99)00061-9
  2. S. I. Jeong, Y. M. Lee, J. Lee, Y. M. Shin, H. Shin, Y. M. Lim, and Y. C. Nho, Macromol. Res., 16, 139 (2008) https://doi.org/10.1007/BF03218843
  3. S. I. Jeong, S. H. Kim, Y. H. Kim, Y. Jung, J. H. Kwon, B. S. Kim, and Y. M. Lee, J. Biomater. Sci., Polym. Ed., 5, 645 (2004)
  4. S. I. Jeong, J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. Y. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim, Biomaterials, 26, 1405 (2005) https://doi.org/10.1016/j.biomaterials.2004.04.036
  5. J. Xie, M. Ihara, Y. Jung, I. K. Kwon, S. H. Kim, Y. H. Kim, and T. Matsuda, Tissue Eng., 12, 449 (2006) https://doi.org/10.1089/ten.2006.12.449
  6. D. W. Grijpma, R. D. A. Hofslot, H. Super, A. J. Nijenhuis, and A. J. Pennings, Polym. Eng. Sci., 34, 1674 (1994) https://doi.org/10.1002/pen.760342205
  7. P. S. Corbin, M. P. Webb, J. E. McAlvin, and C. L. Fraser, Biomacromolecules, 2, 223 (2001) https://doi.org/10.1021/bm005621z
  8. Y. Min, S. Lee, J. K. Parj, K. Y. Cho, and S. J. Sung, Macromol. Res., 16, 231 (2008) https://doi.org/10.1007/BF03218858
  9. M. P. Hiljanen-Vainio, P. A. Orava, and J. V. J. Seppala, Biomed. Mater. Res. Part A, 34, 39 (1997) https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<39::AID-JBM6>3.0.CO;2-O
  10. M. Basko and P. Kubisa, J. Polym. Sci. Part A: Polym. Chem., 44, 7071 (2006) https://doi.org/10.1002/pola.21712
  11. J. K. Kim, D. J. Park, M. S. Lee, and I. K. J. Ihn, Polymer, 42, 7429 (2001) https://doi.org/10.1016/S0032-3861(01)00217-8
  12. Q. Haitao, B. Jianzhong, and W. Shenguo, Polym. Degrad. Stabil., 68, 423 (2000) https://doi.org/10.1016/S0141-3910(00)00031-8
  13. O. Jeon, S. H. Lee, S. H. Kim, Y. M. Lee, and Y. H. Kim, Macromolecules, 36, 5585 (2003) https://doi.org/10.1021/ma034006v
  14. J. M. Lee, B. C. Lee, and S. J. Hwang, J. Chem. Eng. Data, 45, 1162 (2000) https://doi.org/10.1021/je0001678
  15. J. W. Pack, S. H. Kim, S. Y. Park, Y. W. Lee, and Y. H. Kim, Macromolecules, 37, 3564 (2004) https://doi.org/10.1021/ma049951d
  16. C. Wang, H. Li, and X. Zhao, Biomaterials, 25, 5797 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.030
  17. J. Sun, W. Shi, D. Chen, and C. Liang, J. Appl. Polym. Sci., 86, 3312 (2002) https://doi.org/10.1002/app.11234
  18. P. Dubois, C. Jacobs, R. Jerome, and P. Teyssie, Macromolecules, 24, 2266 (1991) https://doi.org/10.1021/ma00009a022
  19. M. Vivas, N. Mejias, and J. Contreras, Polym. Int., 52, 1005 (2003)
  20. J. W. Pack, S. H. Kim, S. Y. Park, and Y. W. Lee, Macromol. Biosci., 4, 340 (2004) https://doi.org/10.1002/mabi.200300089
  21. J. W. Pack, S. H. Kim, I. W. Cho, S. Y. Park, and Y. H. Kim, J. Polym. Sci. Part A: Polym. Chem., 40, 544 (2002) https://doi.org/10.1002/pola.10123
  22. Y. Shen, K. J. Zhu, Z. Shen, and K. M. Yao, J. Polym. Sci. Part A: Polym. Chem., 34, 1799 (1996) https://doi.org/10.1002/(SICI)1099-0518(19960715)34:9<1799::AID-POLA18>3.0.CO;2-1
  23. J. W. Leenslag and A. J. Pennings, Makromol. Chem., 188, 1809 (1987) https://doi.org/10.1002/macp.1987.021880804
  24. H. R. Kricheldorf, I. Kreiser-Saunders, and A. Stricker, Macromolecules, 33, 702 (2000) https://doi.org/10.1021/ma991181w
  25. X. Zhang, D. A. MacDonald, M. F. A. Goosen, and K. B. J. McAuley, J. Polym. Sci. Part A: Polym. Chem., 32, 2965 (1994) https://doi.org/10.1002/pola.1994.080321519
  26. R. F. Storey and A. E. Taylor, J. Macromol. Sci. Pure Appl. Chem., 35, 723 (1998) https://doi.org/10.1080/10601329808002008
  27. A. Kowalski, A. Duda, and S. Penczek, Macromol. Rapid Commun., 19, 567 (1998)
  28. A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 33, 689 (2000) https://doi.org/10.1021/ma9906940
  29. R. F. Storey and J. W. Sherman, Macromolecules, 35, 1504 (2002) https://doi.org/10.1021/ma010986c
  30. N. Ropson, P. Dubois, R. Jerome, and P. Teyssie, Macromolecules, 28, 7589 (1995) https://doi.org/10.1021/ma00127a002
  31. M. Srisa-ard, R. Molloy, N. Molloy, J. Siripitayananon, and M. Sriyai, Polym. Int., 50, 891 (2001) https://doi.org/10.1002/pi.713
  32. M. P. Hiljanen-Vainio, P. A. Orava, and J. V. J. Seppala, Biomed. Mater. Res. Part A, 34, 39 (1997) https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<39::AID-JBM6>3.0.CO;2-O
  33. J. Contreras and D. Davila, Polym. Int., 55, 1049 (2006) https://doi.org/10.1002/pi.2050