Sintering and Consolidation of Silver Nanoparticles Printed on Polyimide Substrate Films

  • Yoon, Sang-Hwa (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Lee, Jun-Ho (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Lee, Pyoung-Chan (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Nam, Jae-Do (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Jung, Hyun-Chul (Central R&D Institute, Samsung Electro-Mechanics Co., Ltd.) ;
  • Oh, Yong-Soo (Central R&D Institute, Samsung Electro-Mechanics Co., Ltd.) ;
  • Kim, Tae-Sung (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Young-Kwan (Department of Polymer Chemical Engineering, Sungkyunkwan University)
  • Published : 2009.08.25

Abstract

We investigated the sintering and consolidation phenomena of silver nanoparticles under various thermal treatment conditions when they were patterned by a contact printing technique on polyimide substrate films. The sintering of metastable silver nanoparticles commenced at 180 $^{\circ}C$, where the point necks were formed at the contact points of the nanoparticles to reduce the overall surface area and the overall surface energy. As the temperature was increased up to 250 $^{\circ}C$, silver atoms diffused from the grain boundaries at the intersections and continued to deposit on the interior surface of the pores, thereby filling up the remaining space. When the consolidation temperature exceeded 270 $^{\circ}C$, the capillary force between the spherical silver particles and polyimide flat surface induced the permanent deformation of the polyimide films, leaving crater-shaped indentation marks. The bonding force between the patterned silver metal and polyimide substrate was greatly increased by the heat treatment temperature and the mechanical interlocking by the metal particle indentation.

Keywords

References

  1. B. J. D. Gans, P. C. Duineveld, and U. S. Schubert, Adv. Mater., 16, 203 (2004) https://doi.org/10.1002/adma.200300385
  2. R. F. Service, Science, 304, 675 (2004) https://doi.org/10.1126/science.304.5671.675
  3. C. W. Sele, T. V. Werne, R. H. Friend, and H. Sirringhaus, Adv. Mater., 17, 997 (2005) https://doi.org/10.1002/adma.200401285
  4. M. S. Park, T. H. Lee, Y. M. Jeon, J. G. Kim, and M. S. Gong, Macromol. Res., 16, 308 (2008) https://doi.org/10.1007/BF03218522
  5. J. K. Kim and H. Ahn, Macromol. Res., 16, 163 (2008) https://doi.org/10.1007/BF03218846
  6. G. P. Kim, Y. S. Jung, S. B. Yoon, D. W. Kim, and S. H. Baeck, Macromol. Res., 15, 693 (2007) https://doi.org/10.1007/BF03218952
  7. S. Magdassi, A. Bassa, Y. Vinetsky, and A. Kamyshny, Chem. Mater., 15, 2208 (2003) https://doi.org/10.1021/cm021804b
  8. A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, Macromol. Rapid Commun., 26, 281 (2005) https://doi.org/10.1002/marc.200400522
  9. Y. Li, Y. Wu, and B. S. Ong, J. Am. Chem. Soc., 127, 3266 (2005) https://doi.org/10.1021/ja043425k
  10. D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, J. Electrochem. Soc., 150, 412 (2003) https://doi.org/10.1149/1.1582466
  11. M. C. Daniel and D. Austruc, Chem. Rev., 104, 293 (2004) https://doi.org/10.1021/cr030698+
  12. P. V. Kamat, J. Phys. Chem. B, 106, 7729 (2002) https://doi.org/10.1021/jp0209289
  13. G. Chumanov, K. Sokolov, B. Gregory, and T. M. J. Cotton, Phys. Chem., 99, 9466 (1995) https://doi.org/10.1021/j100023a025
  14. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Anal.Chem., 67, 735 (1995) https://doi.org/10.1021/ac00100a008
  15. G. Chumanov, K. Sokolov, and T. M. J. Cotton, Phys. Chem., 100, 5166 (1996) https://doi.org/10.1021/jp9536716
  16. S. Malynych, I. Luzinov, and G. Chumanov, Phys. Chem. B, 106, 1280 (2002) https://doi.org/10.1021/jp013236d
  17. L. Xu, J. Liao, L. Huang, D. Ou, Z. Guo, H. Zhang, and C. Ge, Thin Solid Films, 434, 121 (2003) https://doi.org/10.1016/S0040-6090(03)00274-8
  18. Y. Masuda, T. Koumura, T. Okawa, and K. Koumoto, J. Colloid Interf. Sci., 263, 190 (2003) https://doi.org/10.1016/S0021-9797(03)00217-0
  19. K. Bandyopadhyay, V. Patil, K. Vijayamohanan, and M. Sastry, Langmuir, 13, 5244 (1997) https://doi.org/10.1021/la960463b
  20. Z. Zhong, B. Gates, Y. Xia, and D. Qin, Langmuir, 16, 10369 (2000) https://doi.org/10.1021/la001211k
  21. M. K. Ghosh and K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996, pp 121
  22. D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Polyimides, Chapman and Hall, New York, 1990, pp 370
  23. Available from
  24. D. Y. Shih, N. Klymko, R. Flitsch, J. Paraszczak, and S. Nunes, J. Vac. Sci. Technol. A, 9, 2704 (1991) https://doi.org/10.1116/1.577228
  25. D. L. Pappas and J. J. Cuomo, J. Vac. Sci. Technol. A, 9, 2704 (1991) https://doi.org/10.1116/1.577228
  26. T. Strunskus, M. Grunze, G. Kochendoerfer, and C. Woll, Langmuir, 12, 2712 (1996) https://doi.org/10.1021/la950125v
  27. K. W. Lee, S. P. Kowalczyk, and J. M. Shaw, Macromolecules, 23, 2097 (1990) https://doi.org/10.1021/ma00209a038
  28. K. W. Lee, S. P. Kowalczyk, and J. M. Shaw, Langmuir, 7, 2450 (1991) https://doi.org/10.1021/la00059a009
  29. K. W. Lee and A. Viehbeck, IBM J. Res. Dev., 38, 457 (1994) https://doi.org/10.1147/rd.384.0457
  30. I. Ghosh, J. Konar, and A. K. Bhowmick, J. Adhes. Sci. Technol., 11, 877 (1997) https://doi.org/10.1163/156856197X00967
  31. R. R. Thomas, S. L. Buchwalter, L. P. Buchwalter, and T. H. Chao, Macromolecules, 25, 4559 (1992) https://doi.org/10.1021/ma00044a016
  32. G. Rozovskis, J. Vinkevicius, and J. Jaciauskiene, J. Adhes. Sci. Technol., 10, 399 (1996) https://doi.org/10.1163/156856196X00490
  33. N. Inagaki, S. Tasaka, H. Ohmori, and S. Mibu, J. Adhes. Sci. Technol., 10, 243 (1996) https://doi.org/10.1163/156856196X00373
  34. H. K. Yun, K. Cho, J. K. Kim, C. E. Park, S. M. Sim, S. Y. Oh, and J. M. Park, J. Adhes. Sci. Technol., 11, 95 (1997) https://doi.org/10.1163/156856197X01038
  35. M. Strobel, C. Lyons, and K. L. Mittal, Plasma Surface Modification of Polymers, VSP Publications, Utrecht, 1994, pp 201
  36. H. Hiraoka and S. Lazare, Appl. Surf. Sci., 46, 264 (1990) https://doi.org/10.1016/0169-4332(90)90154-R
  37. H. Niino and A. Yabe, Appl. Surf. Sci., 69, 1 (1996) https://doi.org/10.1016/0169-4332(93)90472-N
  38. A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Langmuir, 19, 1498 (1994)
  39. P. Buffat and J. P. Borel, Phys. Rev. A, 13, 2287 (1975) https://doi.org/10.1103/PhysRevA.13.2287
  40. W. Thomson, Philos. Mag., 42, 448 (1871)
  41. M. N. Rahaman, Ceramic processing and sintering, Dekker, New York, 1969, p. 389
  42. P. Zeng, S. Zajac, and P. C. Clapp, Mater. Sci. Eng. A, 252, 301 (1998) https://doi.org/10.1016/S0921-5093(98)00665-0