DOI QR코드

DOI QR Code

CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT)

  • 발행 : 2009.08.30

초록

Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality providing cross-sectional images of a conductivity distribution inside an electrically conducting object. MREIT has rapidly progressed in its theory, algorithm and experimental technique and now reached the stage of in vivo animal and human experiments. Conductivity image reconstructions in MREIT require various steps of carefully implemented numerical computations. To facilitate MREIT research, there is a pressing need for an MREIT software package with an efficient user interface. In this paper, we present an example of such a software, called CoReHA which stands for conductivity reconstructor using harmonic algorithms. It offers various computational tools including preprocessing of MREIT data, identification of boundary geometry, electrode modeling, meshing and implementation of the finite element method. Conductivity image reconstruction methods based on the harmonic $B_z$ algorithm are used to produce cross-sectional conductivity images. After summarizing basics of MREIT theory and experimental method, we describe technical details of each data processing task for conductivity image reconstructions. We pay attention to pitfalls and cautions in their numerical implementations. The presented software will be useful to researchers in the field of MREIT for simulation as well as experimental studies.

키워드

참고문헌

  1. N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, Toronto, Canada: MS Thesis, Dept. of Elec. Eng, 1992
  2. E.J. Woo, S.Y. Lee, and C.W. Mun, 'Impedance tomography using internal current density distribution measured by nuclear magnetic resonance', SPIE, vol. 2299, pp. 377-385, 1994 https://doi.org/10.1117/12.179269
  3. O. Birgul, and Y.Z. Ider, 'Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography', Proc. IXth Int. Conf. Elec. Bio-Impedance, Heidelberg, Germany, pp. 418-419, 1995
  4. Y.Z. Ider, and O. Birgul, 'Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT)', Elektrik, vol. 6, pp. 215-225, 1998
  5. O. Kwon, E.J. Woo, J.R. Yoon, and J.K. Seo, 'Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm', IEEE Trans. Biomed. Eng., vol. 49, pp. 160-167, 2002 https://doi.org/10.1109/10.979355
  6. E.J. Woo, J.K. Seo, and S.Y. Lee, 'Magnetic resonance electrical impedance tomography (MREIT) in Holder D ed.', Electrical Impedance Tomography: Methods, History and Applications, Bristol, UK: IOP Publishing, 2005
  7. E.J. Woo, and J.K. Seo, 'Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging', Physiol. Meas., vol. 29, pp. R1-26, 2008 https://doi.org/10.1088/0967-3334/29/10/R01
  8. H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, and E.J. Woo, 'Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments', Physiol. Meas., vol. 28, pp. 1341-1353, 2007 https://doi.org/10.1088/0967-3334/28/11/002
  9. H.J. Kim, T.I. Oh, Y.T. Kim, B.I. Lee, E.J. Woo, J.K. Seo, S.Y. Lee, O. Kwon, C. Park, B.T. Kang, and H.M. Park, 'In vivo electrical conductivity imaging of a canine brain using a 3T MREIT system', Physiol. Meas., vol. 29, pp. 1145-1155, 2008 https://doi.org/10.1088/0967-3334/29/10/001
  10. T.S. Kim, B.I. Lee, C. Park, S.H. Lee, S.H. Tak, J.K. Seo, O. Kwon, and E.J. Woo, 'A Matlab toolbox for magnetic resonance electrical impedance tomography (MREIT): MREIT toolbox', IJBEM, vol. 7, pp. 352-355, 2005
  11. J.K. Seo, J.R. Yoon, E.J. Woo, and O. Kwon, 'Reconstruction of conductivity and current density images using only one component of magnetic field measurements', IEEE Trans. Biomed. Eng., vol. 50, pp. 1121-1124, 2003 https://doi.org/10.1109/TBME.2003.816080
  12. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, and J.K. Seo, 'Conductivity and current density image reconstruction using harmonic algorithm in magnetic resonance electrical impedance tomography', Phys. Med. Biol., vol. 48, pp. 3101-3116, 2003 https://doi.org/10.1088/0031-9155/48/19/001
  13. J.K. Seo, S.W. Kim, S. Kim, J.J. Liu, E.J. Woo, K. Jeon, and C.O. Lee, 'Local harmonic $B_{z}$ algorithm with domain decomposition in MREIT: computer simulation study', IEEE Trans. Med. Imag., vol. 27, pp. 1754-1761, 2008 https://doi.org/10.1109/TMI.2008.926055
  14. O. Kwon, H.C. Pyo, J.K. Seo, and E.J. Woo, 'Mathematical framework for $B_{z}$ -based MREIT model in electrical impedance imaging', Comp. Math. Appl., vol. 51, pp. 817-828, 2006 https://doi.org/10.1016/j.camwa.2006.03.002
  15. B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo, J.Y. Lee, and W.S. Baek, 'Three-dimensional forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes', Phys. Med. Biol., vol. 48, pp. 1971-1986, 2003 https://doi.org/10.1088/0031-9155/48/13/309
  16. T.I. Oh, Y. Cho, Y.K. Hwang, S.H. Oh, E.J. Woo, and S.Y. Lee, 'Improved current source design to measure induced magnetic flux density distributions in MREIT', J. Biomed. Eng. Res., vol. 27, pp. 30-37, 2006
  17. OpenGL, http://www.opengl.org, 2008
  18. M. Frigo and, S.G. Johnson, http://www.fftw.org, 2008
  19. D.C. Ghiglia, and M.D. Pritt, 'Two-Dimensional Phase Unwrapping: Theory, Algorithms and software', New York, USA: Wiley Interscience, 1998
  20. V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic active contours', Int. J. Comput. Vis., vol 22, pp. 61-79, 1997 https://doi.org/10.1023/A:1007979827043
  21. T. Chan, and L. Vese, 'Active contours without edges', IEEE Trans. Imag. Proc., vol. 10, pp. 266-277, 2001 https://doi.org/10.1109/83.902291
  22. X. Xie, and M. Mirmehdi, 'RAGS: region-aided geometric snake', IEEE Trans. Imag. Proc., vol. 13, pp. 640-652, 2004 https://doi.org/10.1109/TIP.2004.826124
  23. C.O. Lee, S.H. Park, and J Hahn, 'Method for image segmentation using statistically reinstating force and multi-resolution', Applied for Korea patent, 2007
  24. S.H. Park, C.O. Lee, and J Hahn, 'Image segmentation based on the statistical variational formulation using the local region information', DAM Res. Rep. 08-03, KAIST, Korea, 2008
  25. J.R. Shewchuk, 'Triangle: a two-dimensional quality mesh generator and Delaunay triangulator', http://www.cs.cmu.edu/$\sim$quake/triangle.html, 2005
  26. G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Hankelman, 'Sensitivity of magnetic resonance current density imaging', J. Magn. Reson., vol. 97, pp. 235-254, 1992
  27. R. Sadleir, S. Grant, S.U. Zhang, B.I. Lee, H.C. Pyo, S.H. Oh, C. Park, E.J. Woo, S.Y. Lee, O. Kwon, and J.K. Seo, 'Noise analysis in MREIT at 3 and 11 Tesla field strength', Physiol. Meas., vol. 26, pp. 875-884, 2005 https://doi.org/10.1088/0967-3334/26/5/023
  28. B.I. Lee, S.H. Lee, T.S. Kim, O. Kwon, E.J. Woo, and J.K. Seo, 'Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography', IEEE Trans. Biomed. Eng., vol. 52, pp. 1912-1920, 2005 https://doi.org/10.1109/TBME.2005.856258
  29. S.H. Lee, J.K. Seo, C. Park, B.I. Lee, E.J. Woo, S.Y. Lee, O. Kwon, and J. Hahn, 'Conductivity image reconstruction from defective data in MREIT: numerical simulation and animal experiment', IEEE Trans. Med. Imag., vol. 25, pp. 168-176, 2006 https://doi.org/10.1109/TMI.2005.862150