An Automatic LOINC Mapping Framework for Standardization of Laboratory Codes in Medical Informatics

의료 정보 검사코드 표준화를 위한 LOINC 자동 매핑 프레임웍

  • 안후영 (숙명여자대학교 멀티미디어과학과) ;
  • 박영호 (숙명여자대학교 멀티미디어과학과)
  • Published : 2009.08.30

Abstract

An electronic medical record (EMR) is the medical system that all the test are recorded as text data. However, domestic EMR systems have various forms of medical records. There are a lot of related works to standardize the laboratory codes as a LOINC (Logical Observation Identifiers Names and Code). However the existing researches resolve the problem manually. The manual process does not work when the size of data is enormous. The paper proposes a novel automatic LOINC mapping algorithm which uses indexing techniques and semantic similarity analysis of medical information. They use file system which is not proper to enormous medical data. We designed and implemented mapping algorithm for standardization laboratory codes in medical informatics compared with the existing researches that are only proposed algorithms. The automatic creation of searching words is being possible. Moreover, the paper implemented medical searching framework based on database system that is considered large size of medical data.

전자의무기록(Electronic Medical Record, EMR)은 모든 검사 과정이 텍스트 기반의 데이터 형태로 저장되는 의료 분야의 의무기록 시스템을 의미한다. 그러나 국내의 전자의무기록 시스템은 각 의료기관마다 고유한 의료정보검사코드 형태를 이용하여 기록하는 방식으로 정보를 저장하기 때문에 병원 간의 의료검사 기록 형태들의 공유, 해석, 분석에 많은 문제점들을 가진다. 위의 문제들을 해결하기 위하여 표준화 되어 있지 않은 병원들의 검사코드들을 LOINC (Logical Observation Identifiers Names and Code)로 표준화하려는 연구들이 많다. 현재까지의 연구들은 로컬 의료정보검사코드를 수동으로 LOINC로 변환하는 방법이 연구되었다. 또한 대용량 의학 정보들을 다루기에 적절하지 않은 파일 기반에서 코드들을 관리하는 연구들이 이루어져왔다. 기존의 문제점을 해결하기 위하여 본 논문에서는 의료 용어 표준화 알고리즘을 제안하고, 구현하여 해결하였다. 또한, 대표적인 상용시스템이 가졌던 문제점인 검색어를 의사가 직접 생성해야 했던 부분을 LOINC 의 여섯 가지 자동 속성 추출 및 검색어 자동 생성 기능을 구현하여 해결하였다. 또한, 기존의 시스템들이 고려하지 않았던 대용량 데이터의 매핑 부분을 파일 시스템 기반이 아닌 데이터베이스 기반 검색 프레임웍을 구축하였다.

Keywords

References

  1. Emons MF, "Intergrated patient data for optimal patient management," in Proc. Clin Chem, the value of laboratory data in Quality improvement, pp, 1516-1520, 2001.
  2. Shine Young Kim, Hyung Hoi Kim, Eun Yeoup Lee, Chul L.hune Chang, Hwa Sun Kim and Hune Cho, "Development and Adoption of a Universal LOINC Mapping Algorithm," Master Thesis, Pusan National University, Vol.14, No.2, pp. 123-135, 2008.
  3. LOINC References, http://www.regenstrief.org(Updated on Sept. 2008).
  4. Baorto DM, Cimino JJ, Parvin CA and Kahn MG., "Using Logical Observation Identifiers, Names, and Codes (LOINC ) to exchange laboratory data among three academic hospitals," in Proc. AMIA Annu Fall Symp., pp. 96-100, 1997.
  5. RELMA manual, http://www.regenstrief.org/medinformatics/LOINC/RELMA (Update d on Aug. 2007).
  6. 2000 Centers for Diease Control and Prevention, "Health Level Seven Specifications for Electronic Laboratory-Based Reporting of Public Health Information," in Proc. Final Guideline for Implementation with Cancer Registry Comments, Oct., 1997.
  7. Forrey AW, McDonald CJ and et al., "Logical observation identifier names and codes(LOINC ), Clin Chem, a public use set of codes and names for electronic reporting of clinical laboratory test results," in Proc. Clin Chem, pp. 81-90, 1996.
  8. HealthLevelSeven(HL7), http://www.interfaceware.com/hl7.html?gclid=CNOd1cyyqpQCFRGiiQodRBrkzg(Updated on Aug. 2007).
  9. Zollo Ka and Huff SM, "Automated mapping of observation codes using extensional definitions," in Proc. K Am Med Inform Assoc., No.7, pp. 586-592, 2000.
  10. Lau LM, Johnson K, Monson K, Lam SH and Huff SM., "A method for the automated mapping of laboratory results to LOINC," in Proc. AMIA Symp., pp. 472-476, 2000.
  11. White MD, Kolar LM and Steindel SJ, "valuation of vocabularies for electronic laboratory reporting to public health agencies," in Proc. J Am Med Inform Assoc., Vol.3, No.6, pp.185-194, 1999.
  12. Yang Y and Chute CG., "An application of least squares fit mapping to clinical classification," in Proc. Annu Symp Comput Appl Med Care, Vol.460, No.4, 1992.
  13. Sherertz DD, Tuttle MS, Olson NE, Erlbaum MS and Nelson SJ, "Lexical mapping in the UMLS Metathesaurus," in Proc. Annu Symp Comput Appl Med Care., pp. 494-499, 1989.
  14. Bodenreider O, Nelson SJ, Hole WT and Chang HF., "Beyond synonymy: exploiting the UMLS semantics in mapping vocabularies," in Proc. AMIA Annu Symp., pp. 815-819, 1998.
  15. Rocha RA and Huff SM., "Coupling voca bularies and data structures: lessons from LOINC," in Proc. AMIA Annu Fall Symp., pp. 90-94, 1996.
  16. Fellegi IP and Sunter AB., "A theory for record linkage," in Proc. J Am Stat Assoc., Vol.64, No.328, pp. 1183-1210, 1969. https://doi.org/10.2307/2286061
  17. Jaro MA., "Advances in record-linkage methodology as applied to matching the 1985 census of Tampa," in Proc. J Am Stat Assoc., Vol.84, No.406, pp. 414-20, 1989. https://doi.org/10.2307/2289924
  18. Jaro MA., "Unimatch: A Record Linkage System-User's Manual," Washington, DC: U.S. Bureau of the Census, 1978.
  19. Barrows RC Jr, Cimino JJ and Clayton PD., "Mapping clinically useful terminology to a controlled medical vocabulary," in Proc. Annu Symp Comput Appl Med Care, pp. 211-215, 1994.
  20. Sowa JF., "Knowledge Representation: Logical, Philosophical, and Camp utational Foundations," Pacific Grove, Calif: Brooks/Cole, 2000.
  21. McDonald CJ, Huff SM, Suico J, and Mercer K (eds.), LOINC user's guide. http://www.regenstrief.org/LOINC/ (updated on Dec. 2004).
  22. Soo-Young Yoon, Jong-Hyun Yoon,Won Ki Min and et al., "Standardization of Terminology in Laboratory Medicine 1," in Proc. Korean J Lab Med, Vol.27, No.2, pp. 151-155, 2007. https://doi.org/10.3343/kjlm.2007.27.2.151