DOI QR코드

DOI QR Code

Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete

콘크리트의 화학적 특성을 고려한 철근 부식 임계 염소이온 농도

  • 송하원 (연세대학교 사회환경시스템공학부) ;
  • 정민선 (연세대학교 사회환경시스템공학부) ;
  • 안기용 (연세대학교 사회환경시스템공학부) ;
  • 이창홍 (연세대학교 사회환경시스템공학부)
  • Received : 2007.12.04
  • Accepted : 2008.11.18
  • Published : 2009.01.31

Abstract

The present study assesses the chloride threshold level for corrosion of steel in concrete by examining the properties of four different binders used for blended concrete in terms of chloride binding, buffering of cement matrix to a pH fall and the corrosion behaviour. As binders, ordinary Portland cement (OPC), 30% pulverised fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF) were used in a concrete mix. Testing for chloride binding was carried out using the water extraction method, the buffering of cement matrix was assessed by measuring the resistance to an artificial acidification of nitric acid, and the corrosion rate of steel in mortar with chlorides in cast was measured at 28 days using an anodic polarisation technique. Results show that the chloride binding capacity was much affected by $C_{3}A$ content and physical adsorption, and its order was 60% GGBS>30% PFA>OPC>10% SF. The buffering of cement matrix to a pH fall was varied with binder type and given values of the pH. From the result of corrosion test, it was found that the chloride threshold ranged 1.03, 0.65, 0.45 and 0.98% by weight of cement for OPC, 30% PFA, 60% GGBS and 10% SF respectively, assuming that corrosion starts at the corrosion rate of $0.1-0.2{\mu}A/cm^{2}$. The mole ratio of [$Cl^{-}$]:[$H^{+}$], as a new presentation of the chloride threshold, indicated the value of 0.008-0.009, irrespective of binder, which would be indicative of the inhibitive characteristic of binder.

본 연구에서는 혼합 콘크리트의 염소이온 고정화 능력, 수화물의 부식 억제 능력(Buffering capacity) 및 모르타르 내 철근 부식 측정을 통하여 콘크리트 내 철근 부식의 임계 염소이온 농도를 도출하였다. 실험 시 결합재로서 보통 포틀랜드 시멘트(OPC), 30% 플라이애시(PFA), 60% 고로슬래그 미분말(GGBS), 10% 실리카퓸(SF)를 치환한 혼합 시멘트를 사용하였다. 염소이온 고정화는 수분추출방법을 이용하여 측정하였으며, 시멘트의 부식 억제 능력은 결합재에 따른 산에 대한 저항성 측정을 통해 평가하였다. 염소이온이 함유된 모르타르 내 철근 부식은 재령 28일에 선형 분극 방법을 이용하여 측정하였다. 실험 결과, 염소이온 고정화 능력은 결합재 내의 $C_{3}A$ 함유량과 물리적 흡착에 의해 크게 영향을 받음을 알 수 있었다. 염소이온 고정화 정도는60% GGBS > 30% PFA > OPC > 10% SF 의 순으로 나타났다. pH 감소에 따른 시멘트의 부식 억제 능력은 같은 pH 값에서 결합재의 종류에 따라 다양하게 나타났다. 부식전류가 $0.1-0.2{\mu}A/cm^{2}$에 이를 때 부식이 발생한다는 가정하에, 부식에 대한 임계 염소이온 농도에 대하여 OPC는 1.03, 30% PFA는 0.65, 60% GGBS는 0.45, 10% SF는 0.98%로 각각 계산되었다. 그에 비해 임계 염소이온 농도의 새로운 표현방법으로 제시한 [$Cl^{-}$]:[$H^{+}$] 몰 농도비의 단위로 계산하였을 때, 임계 염소이온 농도는 결합재에 관계없이 0.008-0.009로 도출되었다.

Keywords

References

  1. 건설교통부(2004) 콘크리트 표준시방서 내구성편. 한국콘크리트학회.
  2. 문한영, 김성수, 김홍삼, 이승태, 김은호(2000) 염화물 혼입 콘크리트 중의 철근부식 임계 염화물량. 한국콘크리트학회 가을학술발표회 논문집(I), 한국콘크리트학회, Vol. 12, No. 2, pp. 395-398.
  3. 송하원, 백승우, 안기용(2007a) 해안환경하에 있는 콘크리트 구조물의 시간의존성 염화물 침투 평가. 한국콘크리트학회 논문집, 한국콘크리트학회, Vol. 19, No. 5, pp. 585-593.
  4. 송하원, 안기용, 이창홍, 정민선(2007b) 부식 개시 시 시멘트 수화물의 pH 저하 저항성. 한국콘크리트학회 봄학술발표회, 한국콘크리트학회, Vol. 19, No. 1, pp. 661-664.
  5. 송하원, 이창홍, 안기용, 이근주(2006) 각종 혼화재를 첨가한 시멘트 페이스트내의 염소이온 고정화 능력에 관한 실험적 연구. 대한토목학회 정기학술대회 논문집, 대한토목학회, pp. 457-560.
  6. 한국콘크리트학회(2006) 콘크리트 구조물의 염해 내구성에 관한 국제 심포지엄. KCI-C-06-005, 한국콘크리트학회, pp. 93-118.
  7. ACI Committee 201 (1994) Guide to durable concrete, Manual of concrete practice. part 1, ACI, Detroit USA
  8. ACI Committee 222 (1994) Corrosion of metals in concrete, Manual of concrete practice. part 3, ACI, Detroit USA
  9. Ann, K.Y. (2005) Enhancing the chloride threshold level for steel corrosion in concrete. Ph.D. Thesis of University of London, London UK.
  10. Ann, K.Y. and Buenfeld, N.R. (2007) The effect of calcium nitrite on the chloride-induced corrosion of steel in concrete. Mag. Concr. Res., Vol. 59, No. 9, pp. 689-697. https://doi.org/10.1680/macr.2007.59.9.689
  11. Ann, K.Y. and Song, H.W. (2007) Chloride threshold level for corrosion of steel in concrete. Corros. Sci., Vol. 49, pp. 4113-4133. https://doi.org/10.1016/j.corsci.2007.05.007
  12. Arya, C., Buenfeld, N.R., and Newman, J.B. (1987) Assessment of simple methods of determining the free chloride content of cement paste. Cem. Concr. Res., Vol. 17 pp. 908-918.
  13. Arya, C. and Xu, Y. (1995) Effect of cement type on chloride binding and corrosion of steel in concrete. Cem. Concr. Res., Vol. 25, pp. 893-902. https://doi.org/10.1016/0008-8846(95)00080-V
  14. Birnin-Yauri, U.A. and Glasser, F.P. (1998) Friedel’s salt, $Ca_{2}Al(OH)_{6}(Cl,OH).2H_{2}O$: Its solid solutions and their role in chloride binding. Cem. Concr. Res., Vol. 28, pp. 1713-1723. https://doi.org/10.1016/S0008-8846(98)00162-8
  15. Breit, W. and Schiessl, P. (1997) Investigation on the threshold value of the critical chloride content, 4th CANMET/ACI Conference on durability of concrete, ACI SP70, Detroit USA, Vol. 2, pp. 363-372.
  16. British Standard 8110: Part 1 (1985) Structural use of concrete $^{\circ}{\copyright}$ Code of practice for design and construction, British Standards Institute, London UK.
  17. Broomfield, J.P. (1997) Corrosion of steel in concrete-understanding, investigation and repair, E&FN SPON, London and New York.
  18. Buenfeld, N.R. and Broomfield, J.P. (2000) Influence of electrochemical chloride extraction on the bond between steel and concrete. Mag. Concr. Res., Vol. 52, pp. 79-91. https://doi.org/10.1680/macr.2000.52.2.79
  19. CEB-FIP. (2006) Model Code for Service Life Design, the International Federation for Structural Concrete (fib), Task Group 5.6.
  20. Glass, G.K. and Buenfeld, N.R. (1997) Chloride threshold levels for corrosion induced deterioration of steel in concrete. Chloride penetration into concrete, L.O. Nilsson and J.P. Oliver, eds., Nice France, pp. 429-440.
  21. Glass, G.K. and Buenfeld, N.R. (2000) The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corros. Sci. Vol. 42, pp. 329-344. https://doi.org/10.1016/S0010-938X(99)00083-9
  22. Glass, G.K., Reddy, B., and Buenfeld, N.R. (2000a) Corrosion inhibition in concrete arising from its acid neutralization capacity. Corros. Sci., Vol. 42, pp. 1587-1598. https://doi.org/10.1016/S0010-938X(00)00008-1
  23. Glass, G.K., Reddy, B., and Buenfeld, N.R. (2000b) The participation of bound chloride in passive film breakdown on steel in concrete. Corros. Sci., Vol. 42, pp. 2013-2021. https://doi.org/10.1016/S0010-938X(00)00040-8
  24. Gonzalez, J.A., Ramirez, E. and Bautista, A. (1998) Protection of steel embedded in chloride-containing concrete by means of inhibitors. Cem. Concr. Res., Vol. 28 pp. 577-589. https://doi.org/10.1016/S0008-8846(98)00014-3
  25. Gouda, V.K. (1970) Corrosion and corrosion inhibition of reinforcing steel; 1-Immersion in alkaline solution. Br. Corros. J., Vol. 5, pp. 198-203. https://doi.org/10.1179/000705970798324450
  26. Hansson, C.M. and Sorensen, B. (1988) The threshold concentration of chloride in concrete for initiationof reinforcement corrosion. Corrosion rates of steel in concrete, N.S. Berke, V. Chanker and D. Whiting, eds., ASTM STP 1065, pp. 3-16.
  27. Hope, B.B. and Ip, A.K.C. (1986) Corrosion rates of steel in concrete. Cem. Concr. Res., Vol. 16, pp. 771-781. https://doi.org/10.1016/0008-8846(86)90051-7
  28. Hussain, S.E., Rasheeduzafar, S., Al-Musallam, A., and Al-Gahtani, A.S. (1995) Factors affecting threshold chloride for reinforcement corrosion in concrete. Cem. Concr. Res., Vol. 25, pp. 1543-1555. https://doi.org/10.1016/0008-8846(95)00148-6
  29. Isenburg, J. and Moore, M. (1992) Generalized acid neutralization capacity test. Stabilization and solidification of hazardous, radioactive, and mixed wastes, T.M. Gilliam and C.C. Wiles, eds., ASTM STP 1123, pp. 361-377.
  30. JSCE (2002) Standard specification for durability of concrete. Concrete library, 108 83-88 (in Japanese).
  31. Lambert, P., Page, C.L., and Vassie, P.R.W. (1991) Investigations of reinforcement corrosion 2. Electrochemical monitoring of steel in chloride contaminated concrete. Mater. Struct., Vol. 24, pp. 351-358. https://doi.org/10.1007/BF02472068
  32. Maaddawy, T.E. and Soudki, K. (2007) A model for prediction of time from corrosion initiation to corrosion cracking. Cem. Concr. Res., Vol. 29, No. 3, pp. 168-175. https://doi.org/10.1016/j.cemconcomp.2006.11.004
  33. Morris, W., Vico, A., and Vazquez, M. (2004) Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements. Elec. Acta., Vol. 49, pp. 4447-4453. https://doi.org/10.1016/j.electacta.2004.05.001
  34. Page, C.L. (1975) Mechanism of corrosion protection in reinforced concrete marine structure. Nature, Vol. 256, pp. 514-515.
  35. Rasheeduzafar, S., Hussain, S.E., and Al-Saadoum, S.S. (1991) Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete. Cem. Concr. Res., Vol. 21, pp. 777-794. https://doi.org/10.1016/0008-8846(91)90173-F
  36. Saraswathy, V. and Song, H.-W. (2007) Evaluation of corrosion resistance of Portaland pozzolana cement and fly ash blended cements in pre-cracked reinforced concrete slabs under accelerated testing condition. Mater. Chem. Phys., Vol. 104, No. 2-3. pp. 356-361. https://doi.org/10.1016/j.matchemphys.2007.03.033
  37. Sergi, G. and Glass, G.K. (2000) A method of ranking the aggressive nature of chloride contaminated concrete. Corros. Sci., Vol. 42, No. 12, pp. 2043-2049. https://doi.org/10.1016/S0010-938X(00)00050-0
  38. Song, H.-W. (2007) Resistance of cementitious binders to chloride induced corrosion of rebars in concrete sturctures. Materials Science and Technology in Engineering Conference, Kowloon, HongKong, pp. 1-11.
  39. Song, H.-W., Ann, K.Y., Lee, C.H., and Jung, M.S. (2006a) Chloride binding isotherms in cement paste containing various binders. Proceedings of the Life Cycle Management of Coastal Concrete Structues Conference. Yokota H. eds., Nagaoka, Japan, Vol. 1 pp. 109-114.
  40. Song, H.-W., Lee, C.H., and Ann, K.Y. (2007a) Factors influencing chloride transport in concrete structures exposed to marine environments. Cem. Concr. Comp., Vol. 30, pp. 113-121. https://doi.org/10.1016/j.cemconcomp.2007.09.005
  41. Song, H.-W., Pack, S.-W., Lee, C.-H., and Kwon, S.-J. (2006b) Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration, Restoration of Buildings and Monuments, Vol. 12, No. 4. pp. 265-284.
  42. Song, H.-W., Jung, M.S., and Ann, K.Y. (2007b) Resistance of cementitous binders against a fall in the pH at corrosion initiation, International corrosion engineering conference, K.Y. Kim, eds., Seoul Korea.
  43. Song, H.-W. and Saraswathy, V. (2006) Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag- An overview, J. Hazard. Mater., Vol. B1381, pp. 226-233.
  44. Thomas, M. (1996) Chloride thresholds in marine concrete, Cem. Concr. Res., Vol. 26, pp. 513-519. https://doi.org/10.1016/0008-8846(96)00035-X
  45. Uhlig, H.H. (1971) Corrosion and corrosion control. John Wiley and Sons, Inc.