DOI QR코드

DOI QR Code

Numerical Simulations of Discontinuous Density Currents using k-ε Model

k-ε 모형을 이용한 불연속 유입 밀도류의 수치모의

  • 이혜은 (한국건설기술연구원 하천.해안항만연구실) ;
  • 최성욱 (연세대학교 토목환경공학과)
  • Received : 2008.10.15
  • Accepted : 2009.03.26
  • Published : 2009.05.31

Abstract

This study presents a numerical model to simulate density currents developing two dimensionally. The ${\kappa}-{\varepsilon}$ model is used for the turbulence closure. Elliptic flow equations are solved by the finite volume method. In order to investigate the applicability of the numerical model, discontinuous density currents are simulated numerically. The vortices due to the instability at the interface are simulated, showing a good agreement with the experimental visualizations in the literature. It is also investigated that the transition from slumping phase to inertial phase occurs when a bore generated at the end wall overtakes the front. However, the propagation of the density current is retarded compared with the experimental results. Two-dimensional modeling seems to have an effect on underestimating the front velocity of the density current.

본 연구에서는 2-방정식 난류모형인 ${\kappa}-{\varepsilon}$ 모형을 이용하여 2차원적으로 발달하는 하층 밀도류를 모의하기 위한 수치모형을 제시하였다. 타원형 편미분 방정식으로 흐름에 대한 지배방정식을 구성하였으며, 수치기법으로는 유한체적법을 사용하였다. 연구를 통해 개발된 수치모형을 기존의 실험결과와 비교하여 적용성을 검토하였다. 불연속 유입조건 밀도류의 시간별 진행에서 흐름의 불안정에 의한 와(渦)의 발생을 확인하였으며, 진행중인 불연속 유입 밀도류의 진행단계 변화와 선단부 속도의 관계를 살펴보았다. 또한, 무거운 유체 위로 이동하던 주변수체가 벽면을 접하면서 발생된 단파가 밀도류의 진행에 미치는 영향을 수직구조를 통해 살펴보았다. 한편, 개발된 모형을 이용한 수치모의에서 선단부의 진행 속도가 실험보다 느리게 모의되었다. 이는 3차원 현상인 난류의 불안정성을 모의하는 2차원 모형의 한계인 것으로 판단된다.

Keywords

References

  1. 최성욱, 강형식(2001) 부유사 밀도류 점화현상의 수치해석, 대한토목학회논문집, 대한토목학회, 제21권 제3B, pp. 193-200.
  2. Cantero, M.I., Garcia, M.H., Buscaglia, G.C., Bombardelli, F.A., and Dari, E.A. (2003) Multidimensional CFD simulation of a discontinuous density current. 30th IAHR Congress, Thessaloniki, Greece.
  3. Chikita, K. (1989) Field study on turbidity currents initiated from spring runoffs. Water Resources Research, Vol. 25, No. 2, pp. 257-271. https://doi.org/10.1029/WR025i002p00257
  4. Choi, S.-U. and Garcia, M.H. (1995) Modeling of one-dimensional turbidity currents with a dissipative Galerkin finite element method. Journal of Hydraulic Research, IAHR, Vol. 30, No. 5, pp. 623-648.
  5. Choi, S.-U. and Garcia, M.H. (2002) ${\kappa}-{\varepsilon)$ turbulence modeling of density currents developing two dimensionally on a slope. Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 1, pp. 55-63. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(55)
  6. Eghbalzadeh, A., Paik, J., and Sotiropoulos, F. (2009) Two- and three-dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains. Journal of Hydraulic Engineering, ASCE (submitted).
  7. Ellison, T.H. and Turner, J.S. (1959) Turbulent entrainment in stratified flows. Journal of Fluid Mechanics, Vol. 6, pp. 423-448. https://doi.org/10.1017/S0022112059000738
  8. Ghisalberti, M. and Nepf, H.M. (2002) Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research, Vol. 107(C2), pp. 1-11.
  9. Hartel, C., Carlsson, F., and Thunblom, M. (2000) Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. Journal of Fluid Mechanics, Vol. 418, pp. 213-229. https://doi.org/10.1017/S0022112000001270
  10. Hartel, C., Meiburg, E., and Necker, F. (2000) Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics, Vol. 418, pp. 189-212. https://doi.org/10.1017/S0022112000001221
  11. Holmes, P., Lumley, J.L., and Berkooz, G. (1996) Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press.
  12. Huppert, H.E. and Simpson, J.E. (1980) The slumping of gravity currents. Journal of Fluid Mechanics, Vol. 99, No. 4, pp. 785-799. https://doi.org/10.1017/S0022112080000894
  13. Launder, B.E. and Spalding, D.B. (1974) The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  14. Patankar, S.V. (1980) Numerical heat transfer and fluid flow, Taylor & Francis.
  15. Patterson, M.D., Simpson, J.E., Dalziel, S.B., and Nikiforakis, N. (2005) Numerical modelling of two-dimensional and axisymmetric gravity currents. International Journal for Numerical Methods in Fluids, Vol. 47, pp. 1221-1227. https://doi.org/10.1002/fld.841
  16. Rottman, J.W. and Simpson, J.E. (1983) Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. Journal of Fluid Mechanics, Vol. 135, pp. 95-110. https://doi.org/10.1017/S0022112083002979
  17. Simpson, J.E. (1997) Gravity Currents, Cambridge University Press.
  18. Versteeg, H.K. and Malalasekera, W. (2007) An Introduction to Computational Fluid Dynamics - The Finite Volume Method, 2nd. edition, Pearson Prentice Hall, England.