DOI QR코드

DOI QR Code

분할행렬법에 의한 다중 계단지형에서의 파랑변형 계산

Computation of Wave Propagation over Multi-Step Topography by Partition Matrix Method

  • 서승남 (한국해양연구원 연안개발에너지연구부)
  • 투고 : 2009.02.24
  • 심사 : 2009.05.01
  • 발행 : 2009.07.31

초록

다중 계단으로 근사한 사주지형 위를 지나는 선형 파랑전파에 대한 고유함수 전개법에서 크기가 큰 행렬을 풀 때 계산시간을 상당히 단축하기 위하여 분할행렬법을 사용하여 반사율을 계산하였다. 본 모형에 10개의 억류파를 사용하여 현재까지 가장 정밀한 수치해를 구하였고 구한 반사율의 거동은 몇 경우에서 기존 결과와 다름을 보였다. 크기가 큰 행렬을 풀 때 본 분할행렬법의 계산시간과 기억용량은 여전히 커서 효율적인 방법에 대한 개발이 요구된다.

In order to reduce computing time significantly for a large matrix in EFEM of linear waves propagation over ripple beds, each of which is approximated to a multi-step topography, a partition method is presented to calculate reflection coefficients. By use of 10 evanescent modes in the model, the most accurate numerical solutions have been obtained up to date, which show different behaviors of computed reflection coefficient in some cases against the existing results. Both computing time and memory of the present partition model for solving a large matrix are still so much demanding that it is needed to develop an efficient method.

키워드

참고문헌

  1. 서승남(2008a) 산란체법에 의한 다중 계단지형에서의 파랑변형 계산. 한국해안해양공학회논문집, 한국해안해양공학회, 제20권 제5호, pp. 439-451.
  2. 서승남(2008b) 변분근사식과 연계된 산란체법에 의한 파랑변형 계산. 한국해안해양공학회논문집, 한국해안해양공학회, 제20권 제6호, pp. 553-563.
  3. 조용식, 이창훈(1998) 수심이 변하는 지형을 통과하는 파랑의 반사율과 통과율 산정. 대한토목학회논문집, 대한토목학회, 제18권 제II-4호, pp. 351-358.
  4. Athanassoulis, G.A. and Belibassakis, K.A. (1999) A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech., Vol. 389, pp. 275-301. https://doi.org/10.1017/S0022112099004978
  5. Bender, C.J. and Dean, R.G. (2003) Wave transformation by twodimensional bathymetric anomalies with sloped transitions. Coastal Eng., 50, pp. 61-84. https://doi.org/10.1016/j.coastaleng.2003.08.002
  6. Berkhoff, J.C.W. (1972) Computation of combined refraction-diffraction. Proc. 13th Coastal Eng. Conf., Vol. 1, pp. 471-490.
  7. Booij, N. (1983) A note on the accuracy of the mild-slope equation. Coastal Eng., Vol. 7, pp. 191-203. https://doi.org/10.1016/0378-3839(83)90017-0
  8. Chamberlain, P.G. and Porter, D. (1995) The modified mild-slope equation. J. Fluid Mech., Vol. 291, pp. 393-407. https://doi.org/10.1017/S0022112095002758
  9. Davies, A.G. and Heathershaw, A.D. (1984) Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech., Vol. 144, pp. 419-443. https://doi.org/10.1017/S0022112084001671
  10. Devillard, P., Dunlop, F., and Souillard, B. (1988) Localization of gravity waves on a channel with a random bottom. J. Fluid Mech., Vol. 186, pp. 521-538. https://doi.org/10.1017/S0022112088000254
  11. Guazzelli, E., Rey, V., and Belzons, M. (1992) Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech., Vol. 245, pp. 301-317. https://doi.org/10.1017/S0022112092000478
  12. Kim, J.W. and Bai, K.J. (2004) A new complementary mild-slope equation. J. Fluid Mech., Vol. 5111, pp. 24-40.
  13. Kirby, J.T. (1986) A general wave equation for waves over rippled beds. J. Fluid Mech., Vol. 162, pp. 171-186. https://doi.org/10.1017/S0022112086001994
  14. Kirby, J.T. and Dalrymple, R.A. (1983) Propagation of obliquely incident water waves over a trench. J. Fluid Mech., Vol. 133, pp. 47-63. https://doi.org/10.1017/S0022112083001780
  15. Magne, R., Belibassakis, K.A., Herbers T.H.C, Arhuin, F., O'Reilly, W.C., and Rey, V. (2007) Evoluion of surface gravity waves over a submarine canyon, J. Geophys. Res., 112, C01002, doi:10.1029/2005JC003035.
  16. Massel, S.R. (1993) Extended refraction-diffraction equation for surface waves. Coastal Eng., Vol. 19, pp. 97-126. https://doi.org/10.1016/0378-3839(93)90020-9
  17. Miles, J.W. (1967) Surface-wave scattering matrix for a shelf. J. Fluid Mech., Vol. 28, pp. 755-767. https://doi.org/10.1017/S0022112067002423
  18. O'Hare, T.J. and Davies, A.G. (1992) A new model for surfacewave propagation over undulating topography. Coastal Eng.,Vol. 18, pp. 251-266. https://doi.org/10.1016/0378-3839(92)90022-M
  19. O'Hare, T.J. and Davies, A.G. (1993) A comparison of two models for surface-wave propagation over rapidly varying topography. Applied Ocean Res., Vol. 15, pp. 1-11. https://doi.org/10.1016/0141-1187(93)90028-V
  20. Porter, D. (2003) The mild-slope equations. J. Fluid Mech., Vol. 494, pp. 51-63.
  21. Porter, D. and Staziker, D.J. (1985) Extension of the mild-slope equation. J. Fluid Mech., Vol. 300, pp. 367-382.
  22. Smith, R. and Sprinks, T. (1975) Scattering of surface waves by a conical island. J. Fluid Mech., Vol. 72, pp. 373-384. https://doi.org/10.1017/S0022112075003424
  23. Takano, K. (1960) Effets d'un obstacle paralllpipdique sur la propagation de la houle. La Houille Blanche, Vol. 15, pp. 247-267.