DOI QR코드

DOI QR Code

Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber

재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 구조거동

  • 김성배 (연세대학교 토목공학과) ;
  • 김현영 (연세대학교 토목공학과) ;
  • 이나현 (연세대학교 토목공학과) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2009.03.09
  • Accepted : 2009.06.28
  • Published : 2009.09.30

Abstract

This study was performed to prove the possibility of utilizing short plastic fibers made for recycled polyethylene terephthalate (RPET) as a structural material. In order to verify the capacity of RPET fiber, it was compared with polypropylene (PP) fiber, most widely used short synthetic fiber, for fiber volume fraction of 0%, 0.5%, 0.75%, and 1.0%. To measure material properties such as compressive strength, split tensile strength, appropriate tests were performed. Also, to measure the strength and ductility capacities of reinforced concrete (RC) member casted with RPET fiber added concrete, flexural test was performed on RC beams. The results showed that compressive strength decreased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. Split cylinder tensile strength of RPET fiber reinforced concrete increased slightly as fiber volume fraction increased. For structural member performance, ultimate strength, relative ductility and energy absorption of RPET added RC beam are significantly larger than OPC specimen. Also, the results showed that ultimate flexural strength and ductility both increased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. The study results indicate that RPET fiber can be used as an effective additional reinforcing material in concrete members.

본 연구에서는 재활용된 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET)로 만든 플라스틱 단섬유의 구조재료로서의 사용 가능성을 조사하였다. 성능을 검증하기 위해서 가장 널리 상용되는 합성섬유인 폴리프로필렌(polypropylene; PP) 섬유와 비교하였으며, 섬유의 혼입률을 0%, 0.5%, 0.75%, 1.0%로 변화시켜 혼입률에 따른 영향을 함께 검토하였다. 실험으로는 압축강도, 쪼갬인장강도 등의 재료 특성과 재생 PET(recycled PET fibers; RPET) 섬유가 혼입된 RC 부재에서의 극한성능과 연성을 평가하기 위해 RC보의 휨 실험을 수행하였다. 실험결과, 압축강도는 섬유의 혼입량이 증가함에 따라 감소하였으나, 기존 PP섬유와 유사하였다. 반면 쪼갬인장강도는 약간 증가하는 경향을 보였다. 구조 부재에 적용하였을 경우에는 RPET을 혼입한 RC 보의 극한강도, 상대 연성비, 에너지 흡수능력이 OPC 시편에 비해 확연히 증가되는 것을 알 수 있었다. 극한 휨강도와 연성비가 증가하는 현상은 PP 섬유를 혼입한 콘크리트에서도 유사하게 나타났다. 따라서 RPET 섬유는 콘크리트 부재의 보강섬유로 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. 원종필, 박찬기, 김윤정, 박경훈(2007a) 화학적 친수성 처리율에 따른 재생 PET섬유와 시멘트 복합재료와의 계면 인발 특성, 한국콘크리트학회 논문집, 한국콘크리트학회, Vol. 19, No. 3, pp. 333-339. https://doi.org/10.4334/JKCI.2007.19.3.333
  2. 원종필, 박찬기, 김황희, 이상우(2007b) 재생 PET 섬유의 친수성표면처리에 따른 시멘트 복합재료의 소성수축균열제어 효과, 대한토목학회논문집, 대한토목학회, 제27권 제3A호, pp. 413-419.
  3. 원종필, 박찬기, 김황희, 이상우(2007c) 재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향, 한국콘크리트학회 논문집, 한국콘크리트학회, Vol. 19, No. 2, pp. 233-239. https://doi.org/10.4334/JKCI.2007.19.2.233
  4. 한국자원리사이클링학회(2008) 리사이클링백서, 청문각.
  5. 한국PET용기협회(2008).
  6. 홍종석(2007) 재활용 PET병에서 추출한 섬유를 이용한 수축균열 제어용 섬유 콘크리트의 재료성능 평가, 석사학위논문, 세종대학교.
  7. Banthia, N. and Sheng, J. (1996) Fracture toughness of micro-fiber reinforced cement composites. Cement and Concrete Composites, Vol. 18, No. 4, pp. 251-269. https://doi.org/10.1016/0958-9465(95)00030-5
  8. Bayasi, M.Z. and Zeng, J. (1997) Composite slab construction utilizing carbon fiber reinforced mortar. ACI structural Journal, Vol. 94, No. 4, pp. 442-446.
  9. Cengiz, O. and Turanli, L. (2004) Comparative evaluation of steel mesh, steel fibreand high-performance polypropylene fibre reinforced shotcrete in panel test. Cement and Concrete research. Vol. 34, No. 8, pp. 1357-1364. https://doi.org/10.1016/j.cemconres.2003.12.024
  10. Choi, Y.W., Moon, D.J., Chung, J.S., and Cho, S.K. (2005) Effects of waste PET bottles aggregate on the properties of concrete. Cement and Concrete Research. Vol. 35, No. 4, pp. 776-781. https://doi.org/10.1016/j.cemconres.2004.05.014
  11. Dwarakanath, H.V. and Nagaraj, T.S. (1992) Deformational behavior of fiver-reinforced concrete beams in bending. Journal of Structural Engineering, ASCE, Vol. 118, No. 10, pp. 2691-2698. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2691)
  12. Hannant, D.J. (1978) Fibre Cement and Fibre Concretes, John Wiley & Sons Publication, pp. 52-61.
  13. Jo, B.W., Park, S.K., and Park, J.C. (2008) Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Construction and Building Materials. Vol. 22, No. 12, pp. 2281-2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009
  14. Jo, B.W., Tae, G.H., and Kim, C.H. (2007) Uniaxial creep behavior and prediction of recycled-PET polymer concrete. Construction and Building Materials, Vol. 21, No. 7, pp. 1552-1559. https://doi.org/10.1016/j.conbuildmat.2005.10.003
  15. JVEC. (2008) Vinyl Environmental Council of Japan.
  16. Kim, J.H.J., Park, C.G., Lee, S.W., and Won, J.P. (2008) Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering. Vol. 39, No. 3, pp. 441-450.
  17. Marcus, G.R. (1997) The effect of recycled polyethylene Terephthalate (PET) strips and scales on the tensile and compressive properties of concrete. ME thesis, The copper union for the advancement of science and art albert nerken school of engineering.
  18. Mu, B., Li, Z., and Peng, J. (2000) Short fiber-reinforced cementitious extruded plates with high percentage of slag and different fibers. Cement and Concrete research. Vol. 30, No. 8, pp. 1277-1282. https://doi.org/10.1016/S0008-8846(00)00333-1
  19. Naaman, A.E. and Jeong, S.M. (1995) Structural ductility of concrete beams prestressed with FRP tendons. Non-metallic (FRP) reinforcement for concretes structures, Second international RILEM symposium (FRPRCS-2).E&FN Spoon, London, pp. 379-386.
  20. Ochi, T., Okubo, S., and Fukui, K. (2007) Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites. Vol. 29, No. 6, pp. 448-455. https://doi.org/10.1016/j.cemconcomp.2007.02.002
  21. Park, R. (1992) Capacity design of ductile RC building structures for earthquake resistance. Structural Engineer, Vol. 70, No. 16, pp. 279-289.
  22. Rebeiz, K.S., Fowler, D.W., and Paul, D.R. (1993a) Recycling plastics in polymer concrete for construction applications. Journal of materials in civil engineering, ASCE, Vol. 5, No. 2, pp. 237-248. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:2(237)
  23. Rebeiz, K.S. (1995) Time-temperature properties of polymer concrete using recycled PET. Cement and Concrete Composites. Vol. 17, No. 2, pp. 119-124. https://doi.org/10.1016/0958-9465(94)00004-I
  24. Rebeiz, K.S. and Fowler, D.W. (1996) Flexural strength of reinforced polymer concrete made with recycled plastic waste. ACI Structural Journal. Vol. 93, No. 5, pp. 524-530.
  25. Rebeiz, K.S., Serhal, S., and Fowler, D.W. (1993b) Shear behavior of steel reinforced polymer concrete using recycled plastic. ACI Structural Journal. Vol. 90, No. 6, pp. 675-682.
  26. Santos, P. and Pezzin, S.H. (2003) Mechanical properties of polypropylene reinforced with recycled-pet fibres. Journal of Materials Processing Technology. Vol. 143-144, pp. 517-520. https://doi.org/10.1016/S0924-0136(03)00391-1
  27. Zollo, R.F. (1997) Fiber-reinforced concrete: an overview after 30 years of development. Cement and Concrete Composites. Vol. 19, No. 2, pp. 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7