DOI QR코드

DOI QR Code

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems

탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장

  • 윤영철 (명지전문대학 토목과) ;
  • 이상호 (연세대학교 사회환경시스템공학부)
  • Received : 2009.05.01
  • Accepted : 2009.07.20
  • Published : 2009.09.30

Abstract

This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.

본 연구는 균열선단에서 응력특이성을 갖는 탄성균열문제를 해석하기 위한 이동최소제곱 유한차분법을 제시한다. 응력특이성을 유발하는 균열선단 주변장을 모형화하기 위해 근사식에 선단주변함수를 내재적으로 도입하여 이동최소제곱 근사의 틀을 그대로 유지하면서 실제 미분계산을 거의 하지 않고 미분근사를 할 수 있는 이동최소제곱 Taylor 다항식 근사의 장점을 살렸다. 균열문제 정식화시 시간소모적인 적분과정이 필요한 약정식화 대신 해석영역에 배치된 절점에서 지배 미분방정식에 대한 차분식을 직접 구성하는 강정식화를 적용하여 계산 효율성을 향상시켰다. 균열문제 해석을 통해 내적확장된 이동최소제곱 유한차분법이 응력 특이성을 내포한 선단주변 변위장을 정확히 묘사할 수 있을 뿐만 아니라 응력확대계수를 정확히 계산 할 수 있음을 보였다.

Keywords

References

  1. 윤영철, 서창범, 김명원, 이상호(2005a) 무요소법의 약정식화와 강정식화를 위한 일관된 분산미분근사 (1): 수학적 이론배경 및 이산화, 대한토목학회 논문집, 대한토목학회, 제25권, 제5A호, pp. 909-914
  2. 윤영철, 서창범, 김명원, 이상호(2005b) 무요소법의 약정식화와 강정식화를 위한 일관된 분산미분근사 (2): 수치예제 중심으로, 대한토목학회 논문집, 대한토목학회, 제25권, 제5A호, pp. 915-922.
  3. 윤영철, 김동조, 이상호(2007a) 탄성균열해석을 위한 그리드 없는 유한차분법. 한국전산구조공학회 논문집, 한국전산구조공학회, 제20권 제3호, pp. 321-327.
  4. 윤영철, 김효진, 김동조, 윙 캠 리우, 테드 벨리체코, 이상호(2007b) 이동최소제곱 유한차분법을 이용한 응력집중문제 해석 (I): 고체문제의 정식화. 한국전산구조공학회 논문집, 한국전산구조공학회, 제20권 제4호, pp. 493-499.
  5. Belytschko, T., Lu, Y.Y., and Gu, L. (1994) Element-free galerkin methods. International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256. https://doi.org/10.1002/nme.1620370205
  6. Belytschko, T. and Black, T. (1999) Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering Vol.45, No. 5, pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  7. Belytschko, T. and Fleming, M. (1999) Smoothing, enrichment and contact in the element-free galerkin method, Computer and Structures, Vol. 71, pp. 173-195. https://doi.org/10.1016/S0045-7949(98)00205-3
  8. Benzley, S.E. (1974) Representation of singularities with isotropic finite elements. International Journal for Numerical Methods in Engineering, Vol. 8, pp. 537-545. https://doi.org/10.1002/nme.1620080310
  9. Fleming, M., Chu, Y.A., Moran, B., and Belytschko, T. (1997) Enrichment Element-Free Galerkin methods for crack tip fields, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
  10. Lee, S.-H. and Yoon, Y.-C. (2003) An improved crack analysis technique by element-free Galerkin method with auxiliary supports. International Journal for Numerical Methods in Engineering, Vol. 56, pp. 1291-1314. https://doi.org/10.1002/nme.611
  11. Lee, S.-H. and Yoon, Y.-C. (2004) Meshfree point collocation method for elasticity and crack problems, International Journal for Numerical Methods in Engineering, Vol. 61, No. 1, pp. 22-48. https://doi.org/10.1002/nme.1053
  12. Moes, N., Dolbow, J., and Belytschko, T. (1999) A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, Vol.46, No. 1, pp. 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  13. Moran, B. and Shih, C.F. (1987) Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, Vol. 27, pp. 615-641. https://doi.org/10.1016/0013-7944(87)90155-X
  14. Murakami, Y. (1986) Stress intensity factors handbook, Oxford, New York, Pergamon.
  15. Nash, L.G. Jr. and Peter, D.H. (1978) Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics, Vol. 10, pp. 485-496. https://doi.org/10.1016/0013-7944(78)90059-0
  16. Tada, H, Paris, P.C., and Irwin, G.R. (1973) The stress analysis of cracks handbook. Del Research Corporation, Hellertown, Pa.
  17. Yoon, Y.-C., Lee, S.-H., and Belytschko, T. (2006) Enriched mesh-free collocation method with diffuse derivatives for elastic fracture, Computers & Mathematics with Applications, Vol. 51, No. 8, pp. 1349-1366. https://doi.org/10.1016/j.camwa.2006.04.010
  18. Ventura, G., Xu, J.X., and Belytschko, T. (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. International Journal for Numerical Methods in Engineering, Vol. 54, pp. 923-944. https://doi.org/10.1002/nme.471