Inhibitory Effects of 23 Korean Local Plant Extracts on Aldo-keto reductase family 1 B10 (AKR 1 B10)

한국 자생식물 추출물 23종의 Aldo-keto reductase family 1 B10 (AKR 1 B10) 효소 억제효과

  • Lee, Joo-Young (Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Song, Dae-Geun (Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Jung, Sang-Hoon (Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Kim, Jong-Hwan (Specialty Crops Experiment Station, Gangwondo Agricultural Research and Extension Services) ;
  • Ahn, Soo-Young (Specialty Crops Experiment Station, Gangwondo Agricultural Research and Extension Services) ;
  • Nho, Chu-Won (Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute) ;
  • Pan, Cheol-Ho (Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute)
  • 이주영 (한국과학기술연구원 강릉분원) ;
  • 송대근 (한국과학기술연구원 강릉분원) ;
  • 정상훈 (한국과학기술연구원 강릉분원) ;
  • 김종환 (강원도 농업기술원 특화작물시험장) ;
  • 안수용 (강원도 농업기술원 특화작물시험장) ;
  • 노주원 (한국과학기술연구원 강릉분원) ;
  • 판철호 (한국과학기술연구원 강릉분원)
  • Published : 2009.09.30

Abstract

We examined ethanol extracts prepared from 23 Korean local plants obtained in Pyeongchang, Gangwon-do for their inhibitory effects on recombinant human AKR 1 B10 (rhAKR1B10) in vitro. To do this, rhAKR1B10 was first expressed in E. coli as a biological active form and purified by using Ni-affinity chromatography followed by gel permeation chromatography. Then, rhAKR1B10 was used for screening out 23 Korean local plant extracts having an inhibitory activity against itself. Among them, six extracts showed more than 50% inhibition of rhAKR1B10 activity at the concentration of $10{\mu}g$/ml. Especially, the extracts of Ligularia fischeri var. spiciformis Nakai and Rhus trichocarpa Miq. were the most potent because their $IC_{50}$ values were 2.94 and $2.00{\mu}g$/ml, respectively.

Keywords

References

  1. Jin, Y. and Penning, T. M. (2007) Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. Toxicol. 47: 263-292 https://doi.org/10.1146/annurev.pharmtox.47.120505.105337
  2. Barski, O. A., Tipparaju, S. M. and Bhatnagar, A. (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 40: 553-624 https://doi.org/10.1080/03602530802431439
  3. Cao, D. L., Fan, S. T. and Chung, S. S. M. (1998) Identification and characterization of a novel human aldose reductase-like gene. J. Biol. Chem. 273: 11429-11435 https://doi.org/10.1074/jbc.273.19.11429
  4. Hyndman, D. J. and Flynn, T. G. (1998) Sequence and expression levels in human tissues of a new member of the aldoketo reductase family. Biochim. Biophys. Acta. 1399: 198-202 https://doi.org/10.1016/S0167-4781(98)00109-2
  5. Fukumoto, S., Yamauchi, N., Moriguchi, H., Hippo, Y., Watanabe, A., Shibahara, J., Taniguchi, H., Ishikawa, S., Ito, H., Yamamoto, S., Iwanari, H., Hironaka, M., Ishikawa, Y., Niki, T., Sohara, Y., Kodama, T., Nishimura, M., Fukayama, M., Dosaka-Akita, H. and Aburatani, H. (2005) Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers' non-small cell lung carcinomas. Clin. Cancer Res. 11: 1776-1785 https://doi.org/10.1158/1078-0432.CCR-04-1238
  6. Nagaraj, N. S., Beckers, S., Mensah, J. K., Waigel, S., Vigneswaran, N. and Zacharias, W. (2006) Cigarette smoke condensate induces cytochromes P450 and aldo-keto reductases in oral cancer cells. Toxicol. Lett. 165: 182-194 https://doi.org/10.1016/j.toxlet.2006.03.008
  7. Yan, R. L., Zu, X. Y., Ma, J., Liu, Z. W., Adeyanju, M. and Cao, D. L. (2007) Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. Int. J. Cancer. 121: 2301-2306 https://doi.org/10.1002/ijc.22933
  8. Yoshitake, H., Takahashi, M., Ishikawa, H., Nojima, M., Iwanari, H., Watanabe, A., Aburatani, H., Yoshida, K., Ishi, K., Takamori, K., Ogawa, H., Hamakubo, T., Kodama, T. and Araki, Y. (2007) Aldo-keto reductase family 1, member B10 in uterine carcinomas: a potential risk factor of recurrence after surgical therapy in cervical cancer. Int. J. Gynecol. Cancer. 17: 1300-1306 https://doi.org/10.1111/j.1525-1438.2007.00932.x
  9. Gallego, O., Ruiz, F. X., Ardevol, A., Dominguez, M., Alvarez, R., de Lera, A. R., Rovira, C., Farres, J., Fita, I. and Pares, X. (2007) Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10. Proc. Natl. Acad. Sci. U. S. A. 104: 20764-20769 https://doi.org/10.1073/pnas.0705659105
  10. Martin, H. J. O., Breyer-Pfaff, U., Wsol, V., Venz, S., Block, S. and Maser, E. (2006) Purification and characterization of AKR1B10 from human liver: Role in carbonyl reduction of xenobiotics. Drug Metab. Dispos. 34: 464-470
  11. Penning, T. M. (2005) AKR1B10: A new diagnostic marker of non-small cell lung carcinoma in smokers. Clin. Cancer Res. 11: 1687-1690 https://doi.org/10.1158/1078-0432.CCR-05-0071
  12. Balendiran, G. K., Martin, H. J., El-Hawari, Y. and Maser, E. (2009) Cancer biomarker AKR1B10 and carbonyl metabolism. Chem.-Biol. Interact. 178: 134-137 https://doi.org/10.1016/j.cbi.2008.10.044
  13. Zu, X., Yan, R., Ma, J., Liao, D.-F. and Cao, D. (2009) AKR1B10: A potential target for cancer therapy. Bioscience Hypotheses. 2: 31-33 https://doi.org/10.1016/j.bihy.2008.07.011
  14. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685 https://doi.org/10.1038/227680a0