DOI QR코드

DOI QR Code

평판형 히터를 이용한 알루미늄과 타이타늄 산화물 나노유체의 풀비등 임계열유속에 관한 실험적 연구

Experimental Investigation on the Pool Boiling Critical Heat Flux of Water-Based Alumina and Titania Nanofluids on a Flat Plate Heater

  • 안호선 (포항공과대학교 기계공학과) ;
  • 김형대 (포항공과대학교 기계공학과) ;
  • 조항진 (포항공과대학교 기계공학과) ;
  • 강순호 (포항공과대학교 기계공학과) ;
  • 김무환 (포항공과대학교 기계공학과)
  • 발행 : 2009.10.01

초록

Pool boiling heat transfer and critical heat flux (CHF) of water-based nanofluids with alumina and titania nanoparticles of 0.01% by volume were investigated on a disk heater at saturated and atmospheric conditions. The experimental results showed that the boiling in nanofluids caused the considerable increase in CHF on the flat surface heater. It was revealed by visualization of the heater surface subsequent to the boiling experiments that a major amount of nanoparticles deposited on the surface during the boiling process. Pool boiling of pure water on the surface modified by such nanoparticle deposition resulted in the same CHF increases as what boiling nanofluids, thus suggesting the CHF enhancement in nanofluids was an effect of the surface modification through the nanoparticle deposition during nanofluid boiling. Possible reasons for CHF enhancement in pool boiling of nanofluids are discussed with surface property changes caused by the nanoparticle deposition.

키워드

참고문헌

  1. Choi, S.U., 1995, Enhancing Thermal Conductivity of Fluids with Nanoparticles, in : Siginer, D.A., Wnag, H.P., (Eds), Developments and Applications of Non Newtonian Glows, FED-Vol. 231/MD-Vol. 66, ASME,New York, pp. 99-105
  2. Roy Chowdhury, S.K. and Winterton, R.H.S., 1985, Surface Effects in Pool Boiling, International Journal of Heat and Mass Transfer, Vol. 28, Issue 10, pp. 1881-1889 https://doi.org/10.1016/0017-9310(85)90210-8
  3. Ramilison, J.M., Sadasivan, P. and Lienhard, J.H., 1992, Surface Factors Influencing Burnout on Flat Heaters, ASME Journal of Heat Transfer, Vol. 114, pp. 287-290 https://doi.org/10.1115/1.2911261
  4. Kim, S. J., Bang, I. C., Buongiorno, J. and Hu, L.W., 2007, Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux. Int. J. Heat Mass Transfer 50(19-20), pp. 4105-4116 https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
  5. Bang, I. C. and Chang, S. H., 2005, Boiling Heat Transfer Performance and Phenomena of $AI_2$$O_3$-Water Nano-Fluids from a Plain Surface in a Pool. Int. J. Heat Mass Transfer 48(12), pp. 2407-2419 https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  6. Kim, H., Kim, J. and Kim, M.H., 2006b, Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids. Int. J. Heat Mass Transfer 42(25-26), pp. 2003-2013 https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019
  7. Coursey, J. S. and Kim, J., 2008, Nanofluid Boiling: The Effect of Surface Wettability. Int. J. Heat Fluid Flow 29(6), pp. 1577-1585 https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004
  8. Kim, H., 2007. Experimental Investigations of Pool Boiling CHF Enhancement in Nanofluids. Ph.D. Thesis, Pohang University of Science and Technology, Pohang, South Korea
  9. Hyung Dae Kim and Moo Hwan Kim, 2007, “Experimental Investigations on Pool Boiling CHF of Nano-Fluids,” Trans. of the KSME B, Vol. 31, pp. 949-956 https://doi.org/10.3795/KSME-B.2007.31.11.949
  10. Santillan, M.J., Membrives, Quaranta, F., N. and Boccaccini, A. R., 2008, Characterization of $TiO_2$ Nanoparticle Suspensions for Electophoretic Deposition. J. Nanopart. Res. 10, pp. 787-793 https://doi.org/10.1007/s11051-007-9313-8
  11. Kandlikar, S.G., 2001, A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation, ASME Journal of Heat Transfer, Vol. 123, pp. 1071-1079 https://doi.org/10.1115/1.1409265
  12. Coleman, H.W. and Steele, W.G., 1999, Experimentation and Uncertatinty Analysis for Engineers 2nd Edition, John Wiley & Sons, Inc
  13. Rohsenow, W. M. and Griffith, P., 1956, Correlation of Maximum Heat Transfer Data for Boiling of Saturated Liquids. Chem. Eng. Prog. Symp. Series 52(18), 47
  14. Zuber, N., 1959, Hydrodynamic Aspects of Boiling Heat Transfer. Ph.D. Thesis, University of California, Los Angeles, USA
  15. Hamamura, Y. and Katto, Y., 1983, A New Hydrodynamic Model of Critical Heat flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids. Int. J. Heat Mass Transfer 26(3), pp. 389-399 https://doi.org/10.1016/0017-9310(83)90043-1
  16. You, S. M., Kim, J. H. and Kim, K. H., 2003, Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer. Appl. Phy. Lett. 83(16), pp. 3374-3376 https://doi.org/10.1063/1.1619206
  17. Colubovic, M., Hettiarachchi, M. H. D., Worek, W. M., 2008, Nano Fluids and Critical Heat Flux. Paper No. MNHT2008-52204, Proc. 1st ASME Micro/Nanoscale Heat Transfer International Conference, Tainan, Tanwan
  18. Milanova, D. and Kumar, R., 2005, Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids. Appl. Phys. Lett. 87, 233107 https://doi.org/10.1063/1.2138805
  19. Kim, H.D. and Kim, M.H., 2007, Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nanofluids. Appl. Phy. Lett. 91(1), 014104 https://doi.org/10.1063/1.2754644
  20. Liter, S.G.. and Kaviany, M., 2001, Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment, International Journal of Heat and Mass Transfer, Vol.44, pp. 4287-4311 https://doi.org/10.1016/S0017-9310(01)00084-9
  21. Cieslinski, J. T., 2002, Nucleate Pool Boiling on Porous Metallic Coatings. Exp. Therm. Fluid Sci. 25, pp. 557-564 https://doi.org/10.1016/S0894-1777(01)00105-4
  22. Kim, H., DeWitt, G., McKrell, T., Buongiorno, J. and Hu, L. W., 2009, On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids with Alumina, Silica and Diamond Nanoparticles, Int. J. Multiphase Flow (In press) https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.004
  23. Chen, R., Lu, M.C., Srinivasan, V., Wang, Z., Cho, H. H. and Majumda, A., 2009, Nanowires for Enhanced Boiling Heat Transfer. Nano Lett. 9(2), pp. 548-553 https://doi.org/10.1021/nl8026857
  24. Arik, M. and Bar, A.C., 2003, Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids, International Journal of Heat and Mass Transfer, Volume 46, Issue 20, pp. 3755-3764 https://doi.org/10.1016/S0017-9310(03)00215-1
  25. Hahne, E. and Grigull, U., 1977, Heat Transfer in Boiling, Hemisphere, New York
  26. Tong, L.S., 1968, Boiling Heat Transfer and Two- Phase Flow, Wiley, New York
  27. Liaw, S.P. and Dhir, V.K., 1986, Effect of Surface Wettability on Transition Boiling Heat Transfer from a Vertical Surface, Proceeding of 8th International Heat Trasnfer Conference, Vol. 4, pp. 20331-2036
  28. Golobic, I. and Ferjancic, K., 2000, The role of enhanced Coated Surface in Pool Boiling CHF in FC- 72, Heat and Mass Transfer, Vol. 36, pp. 525-531 https://doi.org/10.1007/s002310000118
  29. Takata, T., Hidaka, S., Masuda, M. and Ito, T., 2003, Pool Boiling on a Superhydrophilic Surface, International Journal of Energy Research, Vol. 27, pp. 111-119 https://doi.org/10.1002/er.861