References
- Adhami, V. M., A. Malik, N. Zaman, S. Sarfaraz, I. A. Siddiqui, D. N. Syed, F. Afaq, F. S. Pasha, M. Saleem, and H. Mukhtar. 2007. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin. Cancer Res. 13, 1611-1619 https://doi.org/10.1158/1078-0432.CCR-06-2269
- Baek, S. J., K. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908 https://doi.org/10.1124/mol.104.005108
- Baek, S. J., R. Okazaki, S. H. Lee, J. Martinez, J. S. Kim, K. Yamaguchi, Y. Mishina, D. W. Martin, A. Shoieb, M. F. McEntee, and T. E. Eling. 2006. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560 https://doi.org/10.1053/j.gastro.2006.09.015
- Baek, S. J., L. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434 https://doi.org/10.1093/carcin/23.3.425
- Banu, N., A. Buda, S. Chell, D. Elder, M. Moorghen, C. Paraskeva, D. Qualtrough, and M. Pignatelli. 2007. Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptortransactivation: possibilities for combination therapy. Cell Prolif. 40, 768-779 https://doi.org/10.1111/j.1365-2184.2007.00459.x
- Brognard, J., A. S. Clark, Y. Ni, and P. A. Dennis. 2001. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986-3997
- Brognard, J. and P. A. Dennis. 2002. Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants. Cell Death Differ. 9, 893-904 https://doi.org/10.1038/sj.cdd.4401054
- Chen, Y. L., P. C. Lin, S. P. Chen, C. C. Lin, N. M. Tsai, Y. L. Cheng, W. L. Chang, S. Z. Lin, and H. J. Harn. 2007. Activation of Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 via Extracellular Signal-RegulatedKinase 1/2 Mitogen-Activated Protein Kinase Revealed a Isochaihulactone-Triggered Apoptotic Pathway in Human Lung Cancer A549 Cells. J. Pharmacol. Exp. Ther. 323, 746-756 https://doi.org/10.1124/jpet.107.126193
- Clark, A. S., K. West, S. Streicher, and P. A. Dennis. 2002. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1, 707-717
- Crowell, J. A. and V. E. Steele. 2003. AKT and the phosphatidylinositol 3-kinase/AKT pathway: important molecular targets for lung cancer prevention and treatment. J. Natl. Cancer Inst. 95, 291-302 https://doi.org/10.1093/jnci/95.4.291
- Crowell, J. A., V. E. Steele, and J. R. Fay. 2007. Targeting the AKT protein kinase for cancer chemoprevention. Mol. Cancer Ther. 6, 2139-2948 https://doi.org/10.1158/1535-7163.MCT-07-0120
- Danial, N. N. and S. J. Korsmeyer. 2004. Cell death: Critical control points. Cell 116, 205-219 https://doi.org/10.1016/S0092-8674(04)00046-7
- Dixon, R. A. and D. Ferreira. 2003. Genistein. Phytochemistry 60, 205-211
- Garg, A. K., T. A. Buchholz, and B. B. Aggarwal. 2005. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid. Redox Signal. 7, 1630-1647 https://doi.org/10.1089/ars.2005.7.1630
- Hawk, E. T. and B. Levin. 2005. Colorectal cancer prevention. J. Clin. Oncol. 23, 378-391 https://doi.org/10.1200/JCO.2005.08.09710.1200/JCO.2005.08.097
- Hu, H., C. Jiang, G. Li, and J. Lu. 2005. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells. Carcinogenesis 269, 1374-1381 https://doi.org/10.1093/carcin/bgi094
- Huang, C., J. Li, M. Ding, S. S. Leonard, L. Wang, V. Castranova, V. Vallyathan, and X. Shi. 2001. UV Induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide. J. Biol. Chem. 276, 40234-40240 https://doi.org/10.1074/jbc.M103684200
- Huang, Y., Q. He, M. J. Hillman, R. Rong, and M. S. Sheikh. 2001. Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res. 61, 6918-6924
- Hung, W. C., H. C. Chang, M. R. Pan, T. H. Lee, and L. Y. Chuang. 2000. Induction of p27KIP1 as a Mechanism Underlying NS398- Induced Growth Inhibition in Human Lung Cancer Cells. Mol. Pharmacol. 58, 1398-1403
- Kim, C. H., S. I. Han, S. Y. Lee, H. S. Youk, J. Y. Moon, H. Q. Duong, M. J. Park, Y. M. Joo, H. G. Park, Y. J. Kim, M. A. Yoo, S. C. Lim, and H. S. Kang. 2007. Protein kinase C-ERK1/2 signal pathway switches glucose depletion-induced necrosis to apoptosis by regulating superoxide dismutases and suppressing reactive oxygen species production in A549 lung cancer cells. J. Cell Phyiol. 211, 371-385 https://doi.org/10.1002/jcp.20941
- Li, M., X. Wu, and X. C. Xu. 2001. Induction of apoptosis in colon cancer cells by cyclooxygenase-2 inhibitor NS398 through a cytochrome c-dependent pathway. Clin. Cancer Res. 7, 1010-1016
- Liou, J. Y., D. Ghelani, S. Yeh, and K. K. Wu. 2007. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon. Cancer Res. 67, 3185-3191 https://doi.org/10.1158/0008-5472.CAN-06-3431
- Liu, X. H., S. Yao, A. Kirschenbaum, and A. C. Levine. 1998. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res. 58, 4245-4249
- Lowe, S. W. and A. W. Lin. 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495 https://doi.org/10.1093/carcin/21.3.485
- MacKeigan, J. P., D. Taxman, D. Hunter, H. S. Earp 3rd, L. M. Graves, and J. P. Ting. 2002. Inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of taxol and mitogen-activated protein kinase kinase inhibition. Clin. Cancer Res. 8, 2091-2099
- Meeran, S. M. and S. K. Katiyar. 2008. Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front. Biosci. 13, 2191-2202 https://doi.org/10.1016/j.canlet.2008.03.049
- Meier, F., S. Busch, K. Lasithiotakis, D. Kulms, C. Garbe, E. Maczey, M. Herlyn, and B. Schittek. 2007. Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br. J. Dermatol. 156,1204-1213 https://doi.org/10.1111/j.1365-2133.2007.07821.x
- Minter, H. A., J. W. Eveson, S. Huntley, D. J. Elder, and A. Hague. 2003. The Cyclooxygenase 2-selective Inhibitor NS398 Inhibits Proliferation of Oral Carcinoma Cell Lines by Mechanisms Dependent and Independent of Reduced Prostaglandin E2 Synthesis. Clin. Cancer Res. 9, 1885-1897
- Newman, D., M. Sakaue, J. S. Koo, K. S. Kim, S. J. Baek, T. E. Eling, and A. M. Jetten. 2003. Differential regulation of nonsteroidal anti-inflammatory drug-activated gene in normal human tracheobronchial epithelial and lung carcinomacells by retinoids. Mol. Phamacol. 63, 557-564 https://doi.org/10.1124/mol.63.3.557
- Saha, D., H. Pyo, and H. Choy. 2003. COX-2 inhibitor as a radiation enhancer: new strategies for the treatment of lung cancer. Am. J. Clin. Oncol. 26, S70-74
- Tegeder, I., J. Pfeilschifter, and G. Geisslinger. 2001. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 15, 2057-2072 https://doi.org/10.1096/fj.01-0390rev
- Totzke, G., K. Schulze-Osthoff, and R. U. Jänicke. 2003. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22, 8021-8030 https://doi.org/10.1038/sj.onc.1206837
- Ulrich, C. M., J. Bigler, and J. D. Potter. 2006. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat. Rev. Cancer 6, 130-140 https://doi.org/10.1038/nrc1801
- Vane, J. R. and R. M. Botting. 1998. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med. 104, 2S-8S
- Wilson, L. C., S. J. Baek, A. Call, and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753 https://doi.org/10.1002/ijc.11173
- Yamaguchi, H. and H. G. Wang. 2001. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 53, 7779-7786
- Yamaguchi, K., S. H. Lee, T. E. Eling, and S. J. Baek. 2004. Identification of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) as a novel downstream target of posphatidylinositol 3-knase/AKT/GSK-3 Pathway. J. Biol. Chem. 279, 49617-49623 https://doi.org/10.1074/jbc.M408796200
- Yeh, T. C., P. C. Chiang, T. K. Li, J. L. Hsu, C. J. Lin, S. W. Wang, C. Y. Peng, and J. H. Guh. 2007. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochm. Pharmacol. 73, 782-792 https://doi.org/10.1016/j.bcp.2006.11.027
- Zhang, L., J. Yu, B. H. Park, K. W. Kinzler, and B. Vogelstein. 2000. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989-992 https://doi.org/10.1126/science.290.5493.989