DOI QR코드

DOI QR Code

Effect of Various Gums on Flow Properties and Yield Stress of Korean Sweet Potato Starch

여러 종류의 검 첨가가 국내산 고구마전분의 유동특성 및 Vane 항복응력에 미치는 영향

  • Published : 2009.09.30

Abstract

The effects of seven commercial gums (xanthan gum, guar gum, pectin, gum arabic, gellan, locust bean gum, and sodium alginate) at different concentrations (0, 0.3, and 0.6%) on flow properties of sweet potato starch (SPS) pastes were investigated. Flow behavior characteristics were adequately described by power law flow model, and yield stress was also measured by vane method. SPS-gum mixtures (5% w/w) at $25^{\circ}C$ were found to have high shear-thinning flow behavior with yield stress, and their consistency index (K) and apparent viscosity ($\eta_{a,100}$) increased with elevated gum concentration, except for pectin and sodium alginate. Vane yield stress ($\sigma_o$) value of SPS-pectin mixture was lower when compared to other mixtures while that of SPS-gellan mixture was much higher. Most of the gums, except for pectin, gum arabic, and sodium alginate, showed a synergistic effect on the elastic properties of SPS-gum mixtures. In general, the flow properties of SPS-gum mixtures appeared to be strongly influenced by the addition of gum, and dependent on the type and concentration of gum.

7종류의 상업용 검(xanthan gum, guar gum, pectin, gum arabic, gellan, locust bean gum, sodium alginate)을 국내산 고구마전분에 대해 0%, 0.3%, 0.6% 농도로 첨가한 전분-검혼합 페이스트(5%, w/w)의 유동특성과 항복응력을 측정하였다. 고구마전분-검 혼합물은 대부분 검 농도가 0.3%에서 0.6%로 증가할 때 팽윤력이 증가하였다. 또한 유동특성은 power law 모델식으로부터 결정되었고, 항복응력 측정을 위해 vane 방법이 사용되었다. 고구마전분-검 혼합물은 $25^{\circ}C$에서 shear-thinning 거동특성을 보여주었고, 겉보기 점도(${\eta}_{a,100}$)와 점조도 지수(K)는 pectin과 sodium alginate를 제외한 모든 시료에서 검의 농도가 증가함에 따라 증가하는 경향을 나타내었다. Pectin은 다른 검에 비해 매우 낮은 항복 응력 값을 나타내었고, gellan은 매우 높은 항복응력 값을 나타내었다. 고구마전분-검 혼합물은 pectin, gum arabic 그리고 sodium alginate를 제외한 다른 검 첨가에서 탄성적상승효과를 나타냈다. 일반적으로 고구마전분의 유동특성과 vane 항복응력은 검 첨가에 의해 크게 영향을 받으며, 검 종류와 농도에 의존함을 알 수 있었다.

Keywords

References

  1. Corn, Jung SH, Shing GJ, Choi CU. 1991. Comparison of physicochemical properties of corn, sweet potato, potato wheat and mungbean starches. Korean J Food Sci Technol 23: 272-275
  2. Eliasson AC, Gudmundsson M. 2002. Starch: Physicochemical and functional aspects. In Carbohydrates in Food. Eliasson AC, ed. CRC Press, Boca Raton, FL, USA. p 391-469
  3. Kulicke WM, Eidam D, Kath F, Kix M, Hamburg AH. 1996. Hydrocolloids and rheology: regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannans. Starch 48: 105-114 https://doi.org/10.1002/star.19960480307
  4. Dzuy NQ, Boger DV. 1983. Yield stress measurement for concentrated suspensions. J Rheol 27: 321-349 https://doi.org/10.1122/1.549709
  5. Rao MA, Cooley HJ. 1983. Applicability of flow models with yield for tomato concentrates. J Food Proc Eng 6: 159-173 https://doi.org/10.1111/j.1745-4530.1983.tb00289.x
  6. Rao MA, Steffe JF. 1997. Measuring yield stress of fluid foods. Food Technol 51: 50-52
  7. AOAC. 1984. Official Methods of Analysis. 14th ed. Association of Official Analytical Communities, Arlington, VA, USA
  8. Juliano BO. 1971. A simplified assay for milled-rice amylose. Cereal Sci Today 16: 334-340
  9. Genovese DB, Rao MA. 2003. Vane yield stress of starch dispersions. J Food Sci 68: 2295-2301 https://doi.org/10.1111/j.1365-2621.2003.tb05762.x
  10. Schoch TJ. 1964. Swelling power and solubility of granular starches. In Methods in Carbohydrate Chemistry. Whistler RL, Smith RJ, BeMiller JN, eds. Academic Press, London, UK. Vol 4, p 106-108
  11. Mandala IG, Bayas E. 2004. Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions. Food Hydrocolloids 18: 191-201 https://doi.org/10.1016/S0268-005X(03)00064-X
  12. Song JY, Kwon JY, Choi JD, Kim YC, Shin MS. 2006. Pasting properties of non-waxy rice starch-hydrocolloid mixtures. Starch 58: 223-230 https://doi.org/10.1002/star.200500459
  13. Glicksman M. 1982. Food applications of gums. In Food Carbohydrates. Lineback DR, Inglett GE, eds. Avi, Westport, CT, USA. p 270-295
  14. Lai LS, Liu YL, Lin PH. 2003. Rheological/textural properties of starch and crude hsian-tsao leaf gum mixed systems. J Sci Food Agric 83: 1051-1058 https://doi.org/10.1002/jsfa.1506
  15. Alloncle M, Lefebvre J, Llamas G, Doublier JL. 1989. Rheology of starch-galactomannan gels. Cereal Chem 66: 90-93
  16. Lee MH, Baek MH, Cha DS, Park HJ, Lim ST. 2002. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids 16: 345-352 https://doi.org/10.1016/S0268-005X(01)00107-2
  17. Rodriguez-Hernandez AI, Durand S, Garnier C, Tecante A, Doublier JL. 2006. Rheology-structure properties of waxy maize starch-gellan mixtures. Food Hydrocolloids 20: 1223-1230 https://doi.org/10.1016/j.foodhyd.2006.01.007

Cited by

  1. Effects of Guar Gum on Quality of Soft Tofu Stew Sauce vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.442
  2. Effects of hydrocolloids on acorn starch physical properties vol.68, pp.11-12, 2016, https://doi.org/10.1002/star.201500304
  3. Use of Gum Cordia ( Cordia myxa ) as a Natural Starch Modifier; Effect on Pasting, Thermal, Textural, and Rheological Properties of Corn Starch vol.9, pp.7, 2009, https://doi.org/10.3390/foods9070909
  4. Effects of Guar Gum and Salt on the Consumer Acceptability, Sensory Profile and Rheological Behavior of Soft Tofu Stew Sauce vol.31, pp.4, 2009, https://doi.org/10.17495/easdl.2021.8.31.4.203