DOI QR코드

DOI QR Code

마코프 연쇄를 이용한 서울지점 일강우의 발생특성 변화 연구

A Study on the Change of Occurrence Characteristics of Daily Seoul Rainfall using Markov Chain

  • 황석환 (한국건설기술연구원 수자원연구실) ;
  • 김중훈 (고려대학교 공과대학 건축, 사회환경공학부) ;
  • 유철상 (고려대학교 공과대학 건축, 사회환경공학부) ;
  • 정성원 (한국건설기술연구원 수자원연구실) ;
  • 주진걸 (고려대학교 공과대학 건축, 사회환경공학부)
  • Hwang, Seok-Hwan (Korea Institute of Construction Technology) ;
  • Kim, Joong-Hoon (School of Architecture, Civil & Environmental Eng., Korea University) ;
  • Yoo, Chul-Sang (School of Architecture, Civil & Environmental Eng., Korea University) ;
  • Jung, Sung-Won (Korea Institute of Construction Technology) ;
  • Joo, Jin-Gul (School of Architecture, Civil, and Environmental Eng., Korea University)
  • 발행 : 2009.09.30

초록

본 논문에서는 연속자료로서 세계 최장의 기록을 보유하고 있는 서울지점의 강우량 자료를 이용하여 강우 발생특성의 장기 변동성을 분석하였다. 우선 마코프 연쇄에 근거한 전이확률 및 발생특성을 분석하여 측우기 자료의 정확성을 강우의 발생확률적 측면에서 평가하였다. 그리고 2차원 LOWESS 회귀방법을 이용하여 전이확률의 월간 장기변화특성을 분석하였다. 전이확률 및 발생특성 분석결과 원자료 계열의 CWK와 MRG는 발생특성이 다르게 나타났다. 강우사상의 특성은 과거에 비해 강우사상의 발생빈도가 높아지고 있으며 각 강우사상의 지속기간은 짧아지고 있는 것으로 나타났다. 그리고 전이확률의 월간 장기 변화특성을 분석한 결과, M20을 기준으로 CWK와 MRG의 무강우지속기간은 크게 차이를 보이지 않고 있으며, 강우지속기간은 1830년대 이후 지속적으로 감소하는 경향을 보이고 있는 것으로 나타났다. 특히 최근 9월 강우지속기간의 감소 경향이 두드러지게 나타났다. 이러한 결과를 최근 강우량의 증가양상과 더불어 고려하면 강우사상의 빈도와 심도(강우강도)가 증가하는 추세라고 해석할 수 있다.

In this study, long-term variabilities of rainfall-occurrence characteristics are analyzed using rainfall data at Seoul, which is the longest data record existing in world. first, the accuracy of Chukwooki data set (CWK) are evaluated in view of rainfall-occurrence probability by analyzing the transition probabilities and occurrence characteristics based on Markov chain. And long-term inter-monthly variabilities of transition probabilities are analyzed using two dimensional LOWESS regression. From the results of analyzed transition probabilities and occurrence characteristics, it is different that rainfall-occurrence characteristics between CWK and modern rain gage data set (MRG) for original rainfall data sets (M00). For characteristics of rainfall series, occurrences probabilities of rainfall are increased and durations of each rainfall are shorter than past. And from the results of analyzing the long-term inter-monthly variabilities of transition probabilities, in case of M20, lengths of dry spells between CWK and MRG are not different significantly and lengths of wet spells are decreased persistently after A.D. 1830. Especially, decreasing trend for lengths of wet spells at recent september are appeared significantly. These results are considered with increasing trend of recent rainfall, it is concluded that recent frequencies and intensities of rainfall are increasing.

키워드

참고문헌

  1. 유철상 (2007). “추계학적 기상모형에 대한 검토.” 물과 미래, 제40권, 제3호, pp. 41-51.
  2. 유철상, 이동률 (2000a). “일강우자료의 다지점 모의 발생을 위한 간단한 방법 제안.” 한국수자원학회논문집, 한국수자원학회, 제33권, 제1호, pp. 99-110
  3. 유철상, 이동률 (2000b). “기후변화에 따른 강수일수 및 강수강도의 변화연구.” 대한토목학회논문집, 대한토목학회, 제20권, 제4-B호, pp. 535-544
  4. 정현숙, 임규호 (1994). “서울 지역 월강수량 강수일의 관계, 1770-1907.” 한국기상학회지, 한국기상학회, 제30권, 제4호, pp. 487-505
  5. Buishand, T.A. (1977). Stochastic modelling of daily rainfall sequences, Mededelingen Landbouwhogeschool, Wageningen, pp. 212
  6. Cleveland, W.S. (1979). “Robust Locally Weighted Regression and Smoothing Scatter plots.” Journal of the American Statistical Association, Vol. 14, No. 368, pp. 829-836 https://doi.org/10.2307/2286407
  7. Entekhabi, D., Rodirguez-Iturbe, I., and Eagleson, P.S. (1989). “Probabilistic Representation of the Temporal Rainfall by a Modified Neyman-Scott Rectangular Pulse Model: Parameter Estimation and Validation.” Water Resources Research, Vol. 25, No. 2, pp. 295-302 https://doi.org/10.1029/WR025i002p00295
  8. Gabriel, K.R., and Neumann, J. (1962). “A Markov chain model for daily rainfall occurrence at Tel Aviv.” Quarterly Journal of the Royal Meteorological Society, Vol. 88, pp. 90-95 https://doi.org/10.1002/qj.49708837511
  9. Heermann, D.F., Finkner, M.D., and Hiler, E.A. (1968). “Probability of sequences of wet and dry days for eleven Western states and Texas.” Colorado A.E.S. Technical Bulletin, No. 117
  10. Katz, R.W. (1977). “Precipitation as a chaindependent process.” Journal of Applied Meteorology, Vol. 16, pp. 671-676 https://doi.org/10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2
  11. Richardson, C.W. (1979). “Simulation of daily weather variables.” Presented at Joint meeting of ASCE and CSAE, June 1979
  12. Rodriguez-Iturbe, I., Gupta, V.K., and Waymire, E. (1984). “Scale Consideration in the Modeling of Temporal Rainfall.” Water Resources Research, Vol. 20, No. 11, pp. 1611-1619 https://doi.org/10.1029/WR020i011p01611
  13. Rodriguez-Iturbe, I., Cox, D.R., and Isham, V. (1987). “Some Models for Rainfall Based on Stochastic Point Process.” Proceedings of the Royal Society of London, Vol. A410, No. 1839, pp. 269- 288
  14. Rodriguez-Iturbe, I., Cox, D.R., and Isham, V. (1988). “A Point Process Model for Rainfall: Further Developments.” Proceedings of the Royal Society of London, Vol. A417, No. 1853, pp. 283- 298 https://doi.org/10.1098/rspa.1988.0061
  15. Stern, R.D., and Coe, R. (1984). “A model fitting analysis of daily rainfall data.” Journal of the Royal Society of Statistical Analysis, Vol. 147, pp. 1-34 https://doi.org/10.2307/2981736
  16. Todorovic, P., and Woolhiser, D.A. (1975). “A stochastic model of n-day precipitation.” Journal of Applied Meteorology, Vol. 14, pp. 17-24 https://doi.org/10.1175/1520-0450(1975)014<0017:ASMODP>2.0.CO;2
  17. Wilks, D.S. (1989). “Conditioning stochastic daily precipitation models on total monthly precipitation.” Water Resources Research, Vol. 25, pp. 1429-1439 https://doi.org/10.1029/WR025i006p01429
  18. Wilks, D.S. (1999). “International variability and extreme-value characteristics of several stochastic daily precipitation models.” Agricultural and Forest Meteorology, Vol. 93, pp. 153-169 https://doi.org/10.1016/S0168-1923(98)00125-7

피인용 문헌

  1. Experimental Evaluation of Synthesis Gas Production from Air Dried Woodchip vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.017
  2. Probabilistic Analysis of Vertical Drains using Hasofer-Lind Reliability Index vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.001
  3. Hourly Precipitation Simulation Characteristic Analysis Using Markov Chain Model vol.16, pp.3, 2016, https://doi.org/10.9798/KOSHAM.2016.16.3.351
  4. Analysis of Spatical Distribution of Surface Runoff in Seoul City using L-THIA: Case Study on Event at July 27, 2011 vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.171