References
- 권영문, 김태웅 (2009). “이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도.” 대한토목학회논문집, 대한토목학회, 제29권, 제2B호, pp. 155-162
- 김병식, 김형수 (2008). “유출수문곡선과 돌발홍수지수를 이용한 돌발홍수심도 산정.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제2호, pp. 185-196 https://doi.org/10.3741/JKWRA.2008.41.2.185
- 위성욱, 정건희, 김태웅 (2008). “유출특성 분포함수의 표준화를 통한 종합홍수지수의 개발.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제6호, pp. 605-617 https://doi.org/10.3741/JKWRA.2008.41.6.605
- Ashkar, F., El Jabi, N., and Issa, M. (1998). “A bivariate analysis of the volume and duration of low-flow events.” Stochastic Hydrology and Hydraulics, Vol. 12, pp. 97-116 https://doi.org/10.1007/s004770050012
- Carlos, E. (2007). “Application of bivariate extreme value distribution to flood frequency analysis: a case study of Northwestern Mexico.” Natural Hazards, Vol. 42, pp. 37-46 https://doi.org/10.1007/s11069-006-9044-7
- Gumbel, E.J. (1960). “Multivariate extremal distributions.” Bull. Inst. Internat, De Statistique, Vol. 37, No. 2, pp. 471-475
- Gumbel, E.J., and Mustafi, C.K. (1967). “Some analytical properties of bivariate extreme distributions.” J. Am. Stat. Assoc, Vol. 62, pp. 569 -588 https://doi.org/10.2307/2283984
- Kao, S. (2007). “A bivariate frequency analysis of extreme rainfall with implications for design.” Journal of Geophysical Research, Vol. 112, pp. 1-15 https://doi.org/10.1029/2007JD008522
- Kelly, K.S. and Krzysztofowicz, R. (1997). “A bivariate meta-Gaussian density for use in hydrology.” Stochastic Hydrology and Hydraulics, Vol. 11, pp. 17-31 https://doi.org/10.1007/BF02428423
- Lee, C., Kim, T.W., Chung, G., Choi, M., and Yoo, C. (2009). “Application of bivariate frequency analysis to the derivation of rainfall-frequency curves.” Stochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-009-0328- 0
- Oliveria, J.T.D. (1975). “Bivariate extremes: Extensions.” Bull. of the Inter. Statistical Inst, Vol. 46, No. 2, pp. 241-251
- Oliveria, J.T.D. (1982). Bivariate Extremes: Models and Statistical Decision. Tech. Report no. 14, Center for Stochastic Processes, Dept. of Statistics, University of North Carolina, Chapel Hill ,North Carolina, U.S.A
- Shiau, J.T. (2003). “Return period of bivariate distributed extreme hydrological events.” Stochastic Environmental Research and Risk Assessment, Vol. 17, pp. 42-57 https://doi.org/10.1007/s00477-003-0125-9
- Yue, S., Ouarda, T.B.M.J., Bobee, B., Legendre, P. and Bruneau, P. (1999). “The Gumbel mixed model for flood frequency analysis.” Journal of Hydrology, Vol. 226, No. 1–2, pp. 88-100 https://doi.org/10.1016/S0022-1694(99)00168-7
- Yue, S. (2000a). “The Gumbel mixed model applied to storm frequency analysis.” Water Resource Management, Vol. 14, pp. 377-389 https://doi.org/10.1023/A:1011124423923
- Yue, S. (2000b). “Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls.” Hydrological Science Journal, Vol. 45, No. 2, pp. 315-326 https://doi.org/10.1080/02626660009492327
- Yue, S. (2001a). “A bivariate gamma distribution for use in multivariate flood frequency analysis.” Hydrol Processes, Vol. 15, pp. 1033-1045 https://doi.org/10.1002/hyp.259
- Yue, S. (2001b). “A review of bivariate gamma distributions for hydrological application.” Journal of Hydrology, Vol. 246, pp. 1-18 https://doi.org/10.1016/S0022-1694(01)00374-2
- Yue, S. (2001c). “The Gumbel logistic model for representing a mutivariate storm event.” Advances in Water Resources, Vol. 24, pp. 179-185 https://doi.org/10.1016/S0309-1708(00)00039-7
- Yue, S., and Rasmussen, P. (2002). “Bivariate frequency analysis: discussion of some useful concepts in hydrological application.” Hydrol Process, Vol. 16, pp. 2881–2898 https://doi.org/10.1002/hyp.1185
- Zhang, L., and Singh, V.P. (2006). “Bivariate Flood Frequency Analysis Using the Copula Method.” J. Hydrologic Engrg, ASCE, Vol. 11, No. 2, pp. 150-164 https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)
Cited by
- Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function vol.48, pp.12, 2015, https://doi.org/10.3741/JKWRA.2015.48.12.969
- Bivariate Frequency Analysis of Rainfall using Copula Model vol.45, pp.8, 2012, https://doi.org/10.3741/JKWRA.2012.45.8.827