DOI QR코드

DOI QR Code

An Experimental Study on Flow Characteristic Around Inclined Crest Groyne

경사수제 주변 흐름특성 분석에 관한 실험연구

  • Kang, Joon-Gu (Coastal and Harbor Research Division, Korea Institute of Construction Technology) ;
  • Kim, Sung-Jung (Coastal and Harbor Research Division, Korea Institute of Construction Technology) ;
  • Yeo, Hong-Koo (Coastal and Harbor Research Division, Korea Institute of Construction Technology)
  • 강준구 (한국건설기술연구원 하천.해안항만연구실) ;
  • 김성중 (한국건설기술연구원 하천.해안항만연구실) ;
  • 여홍구 (한국건설기술연구원 하천.해안항만연구실)
  • Published : 2009.09.30

Abstract

In case of inclined crest groyne, flow constriction with water is different. Therefore, it is proper to apply to narrow channel or there is a risk of overflow with water level rising caused by installation of groynes. This study were conducted experiments on inclined crest groyne. Main factors of inclined crest groyne are angles of crests slope and changes of water level. Velocity profile around groyne was measured by LSPIV (Large Scale Particle Image Velocimetry). Flow fields around groyne were analyzed focused on main channel and recirculation area. From the results, Thalweg change has little an effect on rate length and height of recirculation rises on increasing rate length. Length of recirculation area was about 12$\sim$16 times of rate length of groyne. Maximum velocity in main channel area was measured about 1.45$\sim$2.1 times of approach velocity and has little an effect on crest angle of groyne. Back water velocity recirculation area was decreased on approach velocity. This result presents to make stable flow to bank protection.

경사수제는 수위에 따라 흐름축소의 정도가 달라지기 때문에 폭이 좁은 수로나 수제설치로 인해 발생하는 수위상승으로 월류의 위험성이 있는 지점에 적용하기에 적합하다. 본 연구는 수제 선단부가 경사를 이루는 경사수제에 대한 수리실험을 수행하였다. 경사수제 실험의 주요 인자는 수제의 선단부 각도와 수심변화이며 이들 주요인자에 의한 수제주변의 유속을 LSPIV (Large Scale Particle Image Velocimetry)기법을 이용하여 측정하였다. 수제주변 흐름영역은 주흐름영역과 재순환영역으로 구분하여 분석하였다. 실험결과, 흐름중심선 변화는 환산길이에 영향이 크지 않았으나 재순환영역 폭은 환산길이가 클수록 증가하였다. 재순환영역의 길이는 환산수제길이의 약 12 $\sim$ 16배 정도 발생하였다. 주흐름영역에서의 최대유속은 상류접근유속에 1.45 $\sim$ 2.1배 내외로 수제경사에 의한 영향은 크지 않았다. 재순환영역의 역류속은 확연히 감소하는 것으로 나타나 제방부 호안에 안정된 흐름이 형성되는 것으로 나타났다.

Keywords

References

  1. 강준구, 여홍구, 김성중 (2005). “단일 횡수제 조건에 따른 선단부 유속과 재순환 영역에 대한 실험 연구.” 한국수자원학회논문집, 한국수자원학회, 제38권, 제2호, pp. 143-153 https://doi.org/10.3741/JKWRA.2005.38.2.143
  2. 강준구, 여홍구, 노영신 (2006). “수제 설치간격에 다른 수제주변 흐름특성에 관한연구.” 대한토목학회논문집, 대한토목학회, 제26권, 제3B호, pp. 271-278
  3. 여홍구, 노영신, 강준구, 김성중 (2006). “단일수제 설치에 따른 흐름중심선과 흐름분리영역의 변화.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제4호, pp. 313-320 https://doi.org/10.3741/JKWRA.2006.39.4.313
  4. 한국건설기술연구원 (2005). 다기능 하천설계기준사업, 건기연 2005-075
  5. Acheson, A. R. (1968). River Control and Drainage in New Zealand. Ministry of Works, New Zealand
  6. Ettema, R., Muste, M. (2004). “Scale Effects in Flume Experiments on Flow around a Spur Dike in Flatbed channel.” Journal of Hydraulic Engineering, ASCE, Vol. 130, pp. 635-646 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(635)
  7. Federal Highway Administration. (1984). Selection and Design of Flow Control and Streambank Stabilization Structures. Report No. FHWA/RD- 83/099, Washington, D.C
  8. Federal Highway Administration. (1985). Design of Spur-type Streambank Stabilization Structures. U.S. DOT, FHWA, Rep. No. FHWA/RD 84/101, McLean, VA
  9. Franco, J. J. (1966). Laboratory Research on Design of Dikes for River Regulation. Miscellaneous Taper No. 2-860, U.S. Army Engineers Waterways Experiment Station, Vicksburg, Mississippi, November
  10. Jansen, P. Ph., et al. (1979). Principles of River Engineering: The Non-Tidal Alluvial River, Pitman Publishing Limited, London
  11. Richardson, E. V., and Simons, D. B. (1974). Spurs and Guide Banks. Open File Report, Colorado State University Engineering Research Center, Fort Collins, Colorado, February
  12. Uijttewaal, W. S. J. (2005). “Effects of Groyne Layout on the Flow in Groyne Fields: Laboratory Experiments.” Journal of Hydraulic Engineering, ASCE. Vol. 131, pp. 781-791 https://doi.org/10.1061/(ASCE)0733-9429(2005)131:9(782)

Cited by

  1. Numerical investigation of space effects of serial spur dikes on flow and bed changes by using Nays2D vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.241
  2. Effects of Submerged Spur Dikes on the Ecosystem and Bed Deformation in Youngcheon River Bend vol.16, pp.2, 2013, https://doi.org/10.13087/kosert.2013.16.2.137
  3. Flume experiments for turbulent flow around a spur dike vol.49, pp.8, 2016, https://doi.org/10.3741/JKWRA.2016.49.8.707
  4. Changes in Channel Geomorphology and Hydraulics by Submerged Spur Dikes at a Channelized Stream vol.2, pp.1, 2015, https://doi.org/10.17820/eri.2015.2.1.042