초록
A block of an orthomodular lattice L is a maximal Boolean subalgebra of L. A site is a subalgebra of an orthomodular lattice L of the form S = A $\cap$ B, where A and B are distinct blocks of L. An orthomodular lattice L is called with finite sites if |A $\cap$ B| < $\infty$ for all distinct blocks A, B of L. We prove that there exists a weakly path-connected orthomodular lattice with finite sites which is not path-connected and if L is an orthomodular lattice such that the height of the join-semilattice [ComL]$\vee$ generated by the commutators of L is finite, then L is pathconnected.