DOI QR코드

DOI QR Code

CONVERGENCE THEOREMS OF THE MODIFIED ISHIKAWA ITERATIVE PROCESS FOR NONEXPANSIVE MAPPINGS

  • Kang, Shin-Min (Department of Mathematics and the Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Suk-Jin (Department of Mathematics and the Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2008.01.04
  • Accepted : 2008.09.10
  • Published : 2009.03.31

Abstract

In this paper, we introduce an iterative method for a pair of nonexpansive mappings. Strong convergence theorems are established in a real uniformly smooth Banach space.

Keywords

References

  1. R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355. https://doi.org/10.2140/pjm.1973.47.341
  2. Y. J. Cho, S. M. Kang and X. Qin, Approximation of common fixed points of an infinite family of nonexpansive mappings in Banach spaces, Comput. Math. Appl. 56 (2008), 2058-2064. https://doi.org/10.1016/j.camwa.2008.03.035
  3. Y. J. Cho, S. M. Kang and X. Qin, Convergence theorems of fixed points for a finite family of nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2008 (2008), Art. ID 856145.
  4. Y. J. Cho and X. Qin, Viscosity approximation methods for a family of m-accretive mappings in refiexive Banach spaces, Positivity 12 (2008), 483-494. https://doi.org/10.1007/s11117-007-2181-8
  5. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel dekker, New York, 1984.
  6. A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math. 22 (1975), 81-86. https://doi.org/10.1007/BF02757276
  7. S. Ishikawa, Fixed points by a new iteration medthod, Proc. Am. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  8. T. H. Kim and H. K. Xu, Strong convergence of modi ed Mann iterations, J. Math. Anal. Appl. 61 (2005), 51-60.
  9. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  10. C. Martinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2400-2411. https://doi.org/10.1016/j.na.2005.08.018
  11. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
  12. S. Plubtieng and K. Ungchittrakool, Strong convergence of modified Ishikawa iteration for two asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 67 (2007), 2306-2315. https://doi.org/10.1016/j.na.2006.09.023
  13. X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), 415-424. https://doi.org/10.1016/j.jmaa.2006.06.067
  14. X. Qin, Y. Su and M. Shang, Strong convergence of the composite Halpern iteration, J. Math. Anal. Appl. 339 (2008), 996-1002. https://doi.org/10.1016/j.jmaa.2007.07.062
  15. X. Qin, Y. Su and C. Wu, Strong convergence theorems for nonexpansive mappings by viscosity approximation methods in Banach spaces, Math. J. Okayama Univ. 50 (2008), 113-125.
  16. X. Qin and Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965. https://doi.org/10.1016/j.na.2006.08.021
  17. S. Reich, Strong convergence theorems for resolvent of accretive operators in Banach spaces,J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  18. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  19. Y. Su and X. Qin, Strong convergence theorems for asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups, Fixed Point Theory Appl. 2006 (2006), Art. ID 96215.
  20. T. Suzuki, Strong convergence of krasnoselskii and manns type sequences for oneparameter nonexpansive semigroups without bochner integrals, J. Math. Anal. Appl. 305 (2005), 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  21. K. K. Tan and K.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
  22. H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589