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CONVERGENCE THEOREMS OF THE MODIFIED
ISHIKAWA ITERATIVE PROCESS FOR NONEXPANSIVE
MAPPINGS

SHIN MIN KANG AND SUK JIN LEE*

ABSTRACT. In this paper, we introduce an iterative method for a pair of
nonexpansive mappings. Strong convergence theorems are established in
a real uniformly smooth Banach space.

1. Introduction and preliminaries

Let E be a real Banach space and let J denote the normalized duality
mapping from F into 2€" given by

J(@)={f € B : {x, f) = |«|* = |IfI*}, VzeE,

where E* denotes the dual space of E and (-, -) denotes the generalized duality
pairing. The norm of F is said to be Gdteaux differentiable (and F is said to
be smooth) if
L e+ gl o]
t—0 t
exists for each z,y in its unit sphere U = {x € E : ||z|| = 1}. A Banach space
E whose norm is uniformly Gateaux differentiable, then the duality map J is
single-valued and norm-to-weak* uniformly continuous on bounded sets of E.
It is said to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit is attained uniformly for (x,y) € U x U.
Let C' a nonempty closed convex subset of a real Banach space F and T :
C — C anonlinear mapping. A point x € C is a fized point of T provided that
Tz = z. Denote by F(T') the set of fixed points of T, that is, F(T) = {x € C':
Tx =x}.
Recall that the mapping T is said to be nonexpansive if

[Tz = Ty| < |lz—yll, Va,yeC.

Received January 4, 2008; Accepted September 10, 2008.

2000 Mathematics Subject Classification. 47H09, 47TH10, 47J25.

Key words and phrases. Nonexpansive mapping, fixed point, Ishikawa iterative process,
Banach space.

* Corresponding author.

(©2009 The Youngnam Mathematical Society

27



28 SHIN MIN KANG AND SUK JIN LEE

The mapping T is said to be contractive if there exists a constant « € (0,1)
such that
[Tz =Tyl < allz—yll, Vr,yeC.

Some iteration processes are often used to approximate a fixed point of a
nonexpansive mapping 7. The first iteration process is now known as normal
Mann’s iteration process [9] which generates the sequence {z,, } by the following
manner:

(1.1) 20 €C, Tpt1 = anxn+ (1 —ap)Tx,, Yn>0,

where the initial guess z¢ is taken in C' arbitrarily and the sequence {ay, 152
is in the interval [0, 1].

The second iteration process is referred to as Ishikawa’s [7] iteration process
which is defined recursively by

.I()EC,

(1.2) Yn = Bnzn + (1 = Bn) Ty,
Tptl = QnTp + (1 - an)Tyna Yn > 0,

where the initial guess ¢ is taken in C arbitrarily, {«,,} and {3, } are sequences
in the interval [0, 1].

But both (1.1) and (1.2) have only weak convergence, in general (see [6] for
an example). For example, Reich [18] showed that if F is a uniformly convex
and has a Frehét differentiable norm and if the sequence {a,} is such that
>0 o an(l—ay) = oo, then the sequence {z,} generated by the process (1.1)
converges weakly to a point in F(T') (An extension of this result to the process
(1.2) can be found in [21]).

Attempts to modify the iterative processes (1.1) and (1.2) so that strong
convergence is guaranteed have recently been made, see, for example, [2-4,8,10-
16,19]. In 2005, Kim and Xu [8] modified the Mann’s iterative process and
obtained a strong convergence theorem in uniformly smooth Banach spaces.
To be more precise, they proved the following results.

Theorem KX. Let C be a closed convex subset of a uniformly smooth Banach
space E and let T : C — C be a nonezpansive mapping such that F(T) # ().
Given a point u € C and given sequences {an } and {8} in (0,1), the following
conditions are satisfied

(a) a, — 0 and B, — 0 as n — oo,

(b) Yoo g =00 and Yo" B = 0,

(c) fo:o [atpt1 — | < 00 and Z;O:o |Bnt1 — Bn| < o0.
Define a sequence {x,} in C by

xg=a € C chosen arbitrarily,
Yn = BnTn + (1 - ﬁn)Txru
Tpt1 = @t + (1 — an)yn, Yn >0.

Then {x,} strongly converges to a fized point of T.
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Very recently, Qin, Su and Shang [14] further improved Kim and Xu [8]’s
results by modifying Ishikawa iterative process. More precisely, they obtained
the following result.

Theorem QSS. Let C be a closed convex subset of a uniformly smooth Banach
space E and let T : C — C be a nonezpansive mapping such that F(T) # (.
Given a point u € C, the initial guess xog € C is chosen arbitrarily and given
sequences {a, }22 o, {Bn 15y and {vn}52, in [0,1], the following conditions are
satisfied

(a) Yoo oy =00 asn — 0o,

(b) ap — 0, B, — 0 and 0 < a <7, for some a € (0,1),

(€) 2onto lans1 —an| < oo, 32070 1Bnt1—Bal < 00 and 3207 o [Ynt1 =l <
0.
Let {x,}52 1 be a sequence defined by

g =x € C chosen arbitrarily,

Zn = Yy + (1 — yp) T,

Yn = BnTn + (1 = Bn) T2y,

Tpy1 = apu+ (1 — ap)yn, Yn>0.

Then {x,}52, converges strongly to a fized point of T.

In this paper, motivated by Kim and Xu [8] and Qin, Su and Shang [14], we
modify the Ishikawa iterative process for a pair of nonexpansive mappings to
have strong convergence by viscosity approximation methods. Strong conver-
gence theorems are established in a real uniformly smooth Banach space under
some appropriate restrictions imposed on the control sequences.

In order to prove our main results, we need the following definitions and
lemmas.

Recall that if C and D are nonempty subsets of a Banach space E such that
C' is nonempty, closed, convex and D C C, then a map @ : C — D is sunny([1],
[17]) provided Q(z + t(z — Q(z))) = Q(z) for all z € C and ¢t > 0 whenever
x4+ t(z — Q(x)) € C. A sunny nonexpansive retraction is a sunny retraction,
which is also nonexpansive. Sunny nonexpansive retractions play an important
role in our argument. They are characterized as follows [1,17]: if E is a smooth
Banach space, then @ : C — D is a sunny nonexpansive retraction if and only
if there holds the inequality

Reich [17] showed that if E is uniformly smooth and if D is the fixed point set of
a nonexpansive mapping from C' into itself, then there is a sunny nonexpansive
retraction from C' onto D and it can be constructed as follows.

Lemma 1.1. ([17]) Let E be a uniformly smooth Banach space and let T :
C — C be a nonexpansive mapping with a fixed point xy € C of the contraction
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Cozw—tut (1 —t)te. Then {x:} converges strongly ast — 0 to a fixed point
of T. Define Q : C — F(T) by Qu = limy_oxz;. Then Q is the unique sunny
nonexpansive retract from C onto F(T), that is, Q satisfies the property

(u—Qu,J(z—Qu)) <0, YueC,ze F(T).
Lemma 1.2. In a Banach space E, there holds the inequality

lz +yl* < llzl* + 20y, j(z +y)), Vz,y € E,
where j(x +y) € J(x +y).

Lemma 1.3. ([20]) Let {z,,} and {y,} be bounded sequences in a Banach space
E and let B8, be a sequence in [0, 1] with 0 < liminf, o B, < limsup,,_, . On <
1. Suppose that x,+1 = (1 — Bp)yn + PBrnxyn for alln >0 and

i sup([|yns1 = ynll = [#nt1 = znl) <0
n—oo
Then limy, 00 ||yn — 2|l = 0.

Lemma 1.4. ([22]) Let {a,}22, be a sequence of nonnegative real numbers
satisfying the property

Ant1 < (1= m)an +mon, Yn >0,

where {y}22, C (0,1) and {o}22, are such that

(a) limy,— o0 v = 0 and Y07 o n = 00,

(b) either limsup,,_, o 0y <0 0or Y07 [1n0m| < 0.
Then {a, }22, converges to zero.

2. Main results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach
space E, Th,Ty : C — C nonexpansive mappings such that F(Ty) N F(Ts) =
F(T'T3) # 0 and f : C — C a contraction with the coefficient o € (0,1). Let
{zn} be a sequence defined by the following iterative process

xg=x € C chosen arbitrarily,

Zn = YnZn + (1 — ) Toxn,

Yn = BnTn + (1 - ﬁn)lena

Tnt1 = W f(Tn) + AnZn + Onyn, Vn >0,

where {an}, {Bn}, {}, {An} and {0,} are sequences in [0,1]. If the following
conditions are satisfied

(a) an + A + 0, =1 for allm >0,

(b) Yoo g =00 and oy, — 0 as n — oo,

(¢) Bn — 0 and v, — 0 as n — oo,

(d) 0 < liminf, e Ap <limsup,,_, ., An <1,
then {x,} converges strongly to a common fized point of T and Ts.
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Proof. First, we show that {z,} is bounded. Indeed, taking p € F(T1)NF(Tz),
we have

lzn = pll < Wllzn = pll + (1 =) T22n — pll < ll2n — bl
It follows that
[yn = pll < Bullzn —pll + (1 = Bn) [ T12n — p
< Bllen —pll + (1 = Bn)llzn — P
< Jlzn = pll-
This implies that
ns1 —
< anllf(zn) — Pl + Anllzn — pll + dnllyn — pll
< anl[f(@n) = ) + ol f(P) — pll + Anllzn — pll + Onllyn — pll
< anllf(zn) = @) + anllf(p) — pll + (1 = an)llzn — P

1
< max { =11 (p) — Il o — I }-
Now, an induction yields
1
= ol < max {———117®) = pll. |0 ~pl}, V0 =0,

which implies that {x,} is bounded, so are {y,} and {z,}.
Next, we claim that

lim ||2n+1 — 2] = 0.
Putting [,, = Wf_;):\"w", we have
(2.1) Tnt1 = (1 = Ap)ln + Apzyn, Vn>0.

Now, we compute [|l,+1 — l,||. From

g1 f(Tni1) +0np1yni1  anf(@n) + 0nyn

l —l f—
e L= Ana 1—=A,
= 1 f(@n1) + (1= Ant1 — Qn1)Ynr1
1- )\n+1
_ a"f(a:") + (1 —Ap — an)yn
1-X,
— _Ynt1 _ Qo B B
=1 )\n+1(f($n+1) Yn+1) 1= )\n(f(xn) Yn) + Yni1 — Yn,
we have
@
g1 — Inl] < #Hf(xn—i-l) — Yn+1]]
(2.2) n+1

(6%
+ = lyn — f(@n)ll + 1Yn+1 — yall-
1-\,




32 SHIN MIN KANG AND SUK JIN LEE

On the other hand, we have
Zn = YnTn + (1 - 7n)T2$n7
Zn—1 = Yn—-1Tp—1 + (1 - PYnfl)TZanl»
from which it follows that
Zn T Ap—1 = (1 - 'Yn)(T2xn - Tan—l) + ’Yn(xn - xn—l)
+ (P)/nfl - ’Vn)(T2xn71 - xn71)~
This implies that
(2.3) l2n = 2n-1ll < [|#n — Tn—1ll + (V-1 + ¥0) M1,

where M, is an appropriate constant such that M; > supn21{HT2xn_1 -
Zp—1|}. In similar way, we have

Yn = Bnxn + (1 = Bn)T12n,

{yn—l = Bn-1Zn-1+ (1 = Bn—1)T12n-1,

from which it follows that
Yn — Yn—1 = (1 = Bn)(T1 20 — T12p-1) + Bn(Tn — Tn-1)
+ (Th2n-1 — Tn-1)(Bn-1 — Bn)-
This implies that
Yn = Yn—1ll
< (= Bu)lTizn — Trzn-1ll + Bulln — Tn-1l
+ 1 Trzn—1 — Tn-1l|Ba—1 — Bnl

< (= Bulllzn — zn—1ll + Bullzn — zn—1| + (Ba-1 + Bn) Ma,

where Mj is an appropriate constant such that My > sup,,>1{[|T12n—1—%n—1]/}.
Substituting (2.3) into (2.4), we arrive at

(25) ”yn - yn71|| S ||xn - xnle + (’77171 + Tn + 5n71 + ﬁn)Mi’n

where M3 is an appropriate constant such that Ms = max{M;, Ms}. Substi-
tuting (2.5) into (2.2), we obtain

(2.4)

Hln+1 —ln|| — |33n - xnfln
o (0%
< T Gnrt) = gl 75 o = S
+ ('Yn—l + Yn + ﬂn—l + ﬂn)M&
From the conditions (b) and (c), we have that
limsup([[lnt1 — lnll = [|zn+1 — 24)) < 0.

n—oo

It follows from Lemma 1.3 that

lm |1, — 2| = 0.
n—oo
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Thanks to (2.1), we see that
Tn+l — Tn = (1 - ﬂn)(ln - -Tn)
This implies that
(2.6) lim ||2p4+1 — 2] = 0.
n—oo

Noting that

[2n = ynll < lzn = zngall + 201 — ynl

< Nan = g1l + anllf (@) = yull + Anllzn — ynl|-

That is,

(I =2A)llzn = yull < llzn = znga |l + anll f(@n) — ynll-
From the conditions (b) and (d), we obtain

(2.7) lim ||y, — zn] = 0.

n—oo
On the other hand, we have
[T Town — anll < l2n = ynll + lyn — Triznll + (| T22n — ThTomn ||
<N@n = Ynll + Balln — Trzall + |20 — Tozn ||
< |zn = ynll + Bullzn — Tizall + nllzn — Tozsl|.

From the assumption lim,, o B, = lim, 00 v, = 0 and (2.7), we arrive at

(2.8) lim |7 Tex, — 2, = 0.
Put T = T1T». Since T} and T, are nonexpansive, we have that T is also
nonexpansive.
Next, we claim that
(2.9) limsup(f(q) — q, J(zn, — q)) <0,

n—oo

where ¢ = Qf = lim;_.gx; with z; being the fixed point of the contraction
x—tf(x)+ (1 —t)Tx. From x; solves the fixed point equation

e =tf(xy) + (1 — t)Tay.
Thus we have
lar = 2nll = (1= ) (T — ) + £(f (20) — 20|
It follows from Lemma 1.2 that
ot = @nl® < (1= )| Ty — wnl|® + 26(f (2) — 20, J(2e — @)
(2.10) < (1 =2t +8)||we — 20||* + fult)
+ 2t(f (w1) — e, J (3¢ — ) + 2t|| e — 0 |?,
where

(2.11) fa(t) = 2|zt — xnll + |xn — Tz |)||zn — Txp|] = 0 asn — 0.
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It follows that

(212) (@ S, T~ ) < gllee— 2l + o falt)
Let n — oo in (2.12) and note (2.11) yields

(2.13) limsup(z; — f(z0), J(20 — 2n)) < §M4,

n—oo

where M), is an appropriate constant such that My > ||z —z,||* for all ¢ € (0, 1)
and n > 0. Taking ¢t — 0 from (2.13), we have

lim sup lim sup(z; — f(x¢), J(z: — x,)) < 0.

t—0 n—oo
So, for any € > 0, there exists a positive number §; such that, for ¢ € (0,07),

we get

(2.14) limsup(zs — f(2¢), J(x: — x)) <

n—oo

l\')\m

On the other hand, since z; — ¢ as t — 0, we have that there exists do > 0
such that, for ¢ € (0, d2) we have

[(f(@) — . J(zn — @) — (@e — flar), J (e — 20))]
< [{f(@) — ¢, J(@n — @) — (f(@) — ¢, T (xn — @1))|
+(f(@) — ¢ (xn — 20)) — (f (@) — 3¢, J (20 — 1))
<[{fla) —a. J(xn — q) — J(xn — 22))| + [(f(@) — flz1) — g+ 2, J (20 — q))]
<|f(@) —alllJ(zn —q) = J(zn —z)|| + [ f(@) = f(@e) — g + 2el[|20 — |

<6
2.

Picking § = min{d;, >} for all ¢ € (0,0), we have

(@) =4, T (@0 = 0) < @0 = J(@2). T@e = x0) + 5.

That is,

limsup(f(q) — ¢, J(zn, — q)) <limsup(z; — f(z¢), J (s — xp)) +

n—oo n—oo

It follows from (2.14) that

limsup(f(q) — ¢, J(zn — q)) < €.

n—oo

N

Since € is chosen arbitrarily, we have

(2.15). limsup(f(q) — ¢, J(zn, — q)) < 0.

n—00
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Finally, we show that x, — ¢ strongly and this concludes the proof. It
follows from Lemma 1.2 that

2011 — ql?

= M@0 — @) + 0n(Yn — @) + an(f(2n) — ‘I)||2

< n(@n = @) + 0 (yn — DII* + 200 (f(20) = ¢ J(@n11 — )

< Mallzn =gl + Sullyn — al)® + 200 (f(2n) = £(@), I (@011 — q))
+ 200, (f () — ¢, J (Tn+1 — )

<(1- O‘n)QHxn - q||2 + 20 (f(2n) — f(q), J(Tns1 — Q)>
+ 20, (f () — ¢, J(Tn+1 — q))

< (1= an)?[lzn — ql” + analllz, — gl* + [zt —gl?)
+ 20, (f(q) — ¢ I (Tnt1 — q))-

This implies that

|Zn+1 — CIH2
< 1- (21—_0232 +a2 |#n — gl — %(JC(Q) T — )
= %”x" —dlI* - %U(Q) — ¢, J (Tng1 — q)) + Myas,
= (1= A, g
+ 2(11—_023” (M4(21(1—_azr)1>an {7 (0) ~ a), T — )

2
where My is an appropriate constant such that My > sup,,~o{ ”f";qu} From

—aay,

Lemma 1.4, we see that ||z, —q|| — 0 as n — co. This completes the proof. [
From Theorem 2.1, we have the following results immediately.

Corollary 2.1. Let C be a closed convex subset of a uniformly smooth Banach
space E, Ty : C' — C nonezpansive mappings such that F(Ty) # 0 and f : C —
C' a contraction with the coefficient o € (0,1). Let {x,,} be a sequence defined
by the following iterative process

xo=x € C chosen arbitrarily,
Yn = Bnl'n + (1 - Bn)Tlx'ru
Tn+1 = an.f(xn) + Anxn + 5nyn7 Vn Z 07

where {an}, {Bn}, {An} and {0,} are sequences in [0,1]. If the following
conditions are satisfied

(a) an + A + 0, =1 for allm >0,

(b) >0 g =00 and oy, — 0 as n — oo,

(¢) Bn — 0 as n — oo,



36 SHIN MIN KANG AND SUK JIN LEE

(d) 0 < liminf, 0o Ay < limsup,, oo An < 1,
then {x,} converges strongly to a fized point of Ty .

Corollary 2.2. Let C be a closed convex subset of a uniformly smooth Banach
space E, Ty : C — C nonexpansive mappings such that F(Ty1) # 0. Let {z,}
be a sequence defined by the following iterative process

g =x € C chosen arbitrarily,
Tp+l = Qpth + ATy + 0,112y, VN >0,

where u € C' is giwen point, {an}, {A} and {6,,} are sequences in [0,1]. If the
following conditions are satisfied

(a) ap + A+ 0, =1 for all n > 0,

(b) Y02 g =00 and oy, — 0 as n — oo,

(¢) 0 < liminf, o Ay <limsup,,_, oo An < 1,
then {x,} converges strongly to a fixed point of Tj.
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