DOI QR코드

DOI QR Code

COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS OF TYPE (A) AND (P) WITH APPLICATIONS IN DYNAMIC PROGRAMMING

  • Jiang, Guojing (Dalian Vocational Technical College) ;
  • Liu, Min (Department of Mathematics Liaoning Normal University) ;
  • Lee, Suk-Jin (Department of Mathematics and the Research Institute of Natural Science Gyeongsang National University) ;
  • Kang, Shin-Min (Department of Mathematics and the Research Institute of Natural Science Gyeongsang National University)
  • 투고 : 2008.01.03
  • 심사 : 2008.09.10
  • 발행 : 2009.03.31

초록

In this paper, the concepts of compatible mappings of types (A) and (P) are introduced in an induced metric space, two common xed point theorems for two pairs of compatible mappings of types (A) and (P) in an induced complete metric space are established. As their applications, the existence and uniqueness results of common solution for a system of functional equations arising in dynamic programming are discussed.

키워드

참고문헌

  1. R. Bellman and E. S. Lee, Functional equations arising in dynamic programming, Ae-quationes Math. 17 (1978), 1-18. https://doi.org/10.1007/BF01818535
  2. P. C. Bhakta and S. R. Choudhury, Some existence theorems for functional equations arising in dynamic programming II, J. Math. Anal. Appl. 131 (1988), 217-231. https://doi.org/10.1016/0022-247X(88)90201-6
  3. P. C. Bhakta and S. Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl. 98 (1984), 348-362. https://doi.org/10.1016/0022-247X(84)90254-3
  4. N. J. Huang, B. S. Lee and M. K. Kang, Common fixed point theorems for compatible mappings with applications to the solutions of functional equations arising in dynamic programming, Int. J. Math. Math. Sci. 20 (1997), 673-680. https://doi.org/10.1155/S0161171297000926
  5. Z. Liu, Existence theorems of solutions for certain classes of functional equations arising in dynamic programming, J. Math. Anal. Appl. 262 (2001), 529-553. https://doi.org/10.1006/jmaa.2001.7551
  6. Z. Liu, Coincidence theorems for expansive mappings with applications to the solutions of functional equations arising in dynamic programming, Acta Sci. Math. (Szeged) 65 (1999), 359-369.
  7. Z. Liu, Compatible mappings and fixed points, Acta Sci. Math. (Szeged) 65 (1999), 371-383
  8. Z. Liu, A note on unique common fixed point, Bull. Cal. Math. Soc. 85 (1993), 469-472.
  9. Z. Liu, R. P. Agarwal and S. M. Kang, On solvability of functional equations and system of functional equations arising in dynamic programming, J. Math. Anal. Appl. 297 (2004), 111-130. https://doi.org/10.1016/j.jmaa.2004.04.049
  10. Z. Liu and S. M. Kang, Properties of solutions for certain functional equations arising in dynamic programming, J. Global Optim. 34 (2006), 273-292. https://doi.org/10.1007/s10898-005-2605-6
  11. Z. Liu and S. M. Kang, Existence and uniqueness of solutions for two classes of functional equations arising in dynamic programming, Acta Math. Appl. Sini. 23 (2007), 195-208. https://doi.org/10.1007/s10255-007-0363-6
  12. Z. Liu and J. K. Kim , A common fixed point theorem with applications in dynamic programming, Nonlinear Funct.Anal. and Appl. 1 (2006), 11-19.
  13. Z. Liu and J. S. Ume, On properties of solutions for a class of functional equations arising in dynamic programming, J. Optim. Theory Appl. 117 (2003), 533-551. https://doi.org/10.1023/A:1023945621360
  14. Z. Liu, J. S. Ume and S. M. Kang, Some existence theorems for functional equations arising in dynamic programming, J. Korean Math. Soc. 43 (2006), 11-28. https://doi.org/10.4134/JKMS.2006.43.1.011
  15. Z. Liu, Y. Xu, J. S. Ume and S. M. Kang, Solutions to two functional equations arising in dynamic programming, J. Comput. Appl. Math. 192 (2006), 251-269. https://doi.org/10.1016/j.cam.2005.04.033
  16. H. K. Pathak and B. Fisher, Common fixed point theorems with applications in dynamic programming, Glasnik Mate. 31 (1996), 321-328.
  17. H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed points theorems for compatible mappings of type (P) and applications to dynamic programming, Le Matematiche. L (1995), 15-33.
  18. B. N. Ray, On common fixed points in metric spaces, Indian J. Pure Appl. Math. 19(10) (1988), 960-962.