참고문헌
- Abramowitz, M. and Stegun, I. A.(Editors), Handbook of Mathematical Functions and Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1971.
- Aghalary, R., Joshi, S. B., Mohapatra, R. N. and Ravichandran, V., Subordinations for analytic functions defined by Dziok-Srivastava linear operator, Appl. Math. Comput., 37 (2006), 533-542.
- Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
- Dinggong, Y. and Liu, J. L., On a class of analytic functions involving Ruscheweyh derivatives, Bull. Korean Math. Soc., 39(1) (2002), 123-131. https://doi.org/10.4134/BKMS.2002.39.1.123
- Dziok, J. and Raina, R. K., Families of analytic functions associated with the Wright generalized hypergeometric functions, Demonstratio Math., 37 (2004), 533-542.
- Dziok, J., Raina, R. K. and Srivastava, H. M., Some classes of analytic functions associated with operator on Hilbert space involving Wright's generalized hypergeometric functions, Proc. Janggeon Math. Soc., 7 (2004), 43-55.
- Dziok, J. and Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric functions, Appl. Math. Comput., 103 (1999), 1-13. https://doi.org/10.1016/S0096-3003(98)10042-5
- Liu, J. L., On subordination for certain multivalent analytic functions associated with the generalized hypergeometric function, J. Inequal. Pure Appl. Math., 7(4) (Article 131)(2006), 1-6 (electronic).
- Livingston, A. E., On the radius of the univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357. https://doi.org/10.1090/S0002-9939-1966-0188423-X
- Miller S. S. and Mocanu P. T., Differential Subordinates: Theory and Applications, Series in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, (2000).
- Miller, S. S. and Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171. https://doi.org/10.1307/mmj/1029002507
-
Obradovic, M., On certain inequalities for some regular functions in
${\left|}z{\right|}$ , Int. J. Math. Sci., 8 (1985), 671-678. - Ozkan, O., Some subordination results on multivalent functions defined by integral operator, J. Inequal. Appl., Volume 2007(2007), Article ID 71616, 1-8 (electronic).
- R. K. Raina Some results associated with fractional calculus operators involving Appell hypergeometric function, J. Inequal. Pure Appl. Math., 10 (2009), 1-7 (electronic).
- Sham, S., Kulkurni, S. R. and Jahangiri, J. M., Subordination properties of pvalent functions defined by integral operators, Internat. J. Math. Math. Sci., Volume 2006(2006), Article ID 94572, 1-3 (electronic).
- Srivastava, H. M., Patel, J. and Mohapatra, G. P., Some applications of differential subordination to a general class of multivalent functions, Adv. Stud. Contemp. Math., 3(1) (2001), 1-15.
- Srivastava, H. M., Patel, J. and Mohapatra, G. P., A certain class of p-valently analytic functions, Math. Comput. Modelling, 41 (2005), 321-324. https://doi.org/10.1016/j.mcm.2003.06.010
- Srivastava, H. M., Suchithra, K., Stephen, B. A. and Sivasubramanian, S., Inclusion and neighborhood properties of certain subclasses of analytic and multivalent functions of complex order, J. Inequal. Pure Appl. Math., 7(5) (Article 191)(2006), 1-8 (electronic).