참고문헌
- Aubin, J. -P., Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111. https://doi.org/10.1287/moor.9.1.87
- Argyros, I. K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic. 298 (2004), 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
- Argyros, I. K., Newton Methods, Nova Science Publ. Inc., New York, 2005.
- Argyros, I. K., On the secant method for solving nonsmooth equations, J. Math. Anal. Appl. (to appear, 2006).
- Dontchev, A. L. and Hager, W. W., An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-484. https://doi.org/10.1090/S0002-9939-1994-1215027-7
- Dontchev, A. L., Local convergence of the Newton method for generalized equations, C. R. Acad. Sci. Paris, t. 332, Serie I (1996), 327-331, Mathematical Analysis.
- Geoffory, M. H. and Pietrus, A., A local convergence of some iterative methods for generalized equations, J. Math. Anal. Applic. 290 (2004), 497-505. https://doi.org/10.1016/j.jmaa.2003.10.008
- Ioffe, A. D. and Tikhomirov, V. M., Theory of Extremal Problems, North Holland, Amsterdam, 1979.
- Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
- Rockafellar, R. T., Lipschitz properties of multifunctions, Nonlinear Analysis, 9 (1985), 867-885. https://doi.org/10.1016/0362-546X(85)90024-0
- Xiao, B. and Harker, P. T., A nonsmooth Newton method for variational inequalities I: Theory, Math. Programming, 65 (1994), 151-194. https://doi.org/10.1007/BF01581695