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LOCAL CONVERGENCE OF NEWTON-LIKE METHODS
FOR GENERALIZED EQUATIONS

ToanNis K. ARGYROS

ABSTRACT. We provide a local convergence analysis for Newton-like meth-
ods for the solution of generalized equations in a Banach space setting.
Using some ideas of ours introduced in [2] for nonlinear equations we show
that under weaker hypotheses and computational cost than in [7] a larger
convergence radius and finer error bounds on the distances involved can
be obtained.

1. Introduction

In this study we are concerned with the problem of approximating a solution
x* of the generalized equation

o€ f(z)+g(x) + F(z), (1)

where X, Y are Banach spaces, f: X — Y is a Fréchet-differentiable operator
in a neighborhood U of z*, g: X — Y is continuous at z* and F' denotes a
set-valued map from X into the subsets of Y.

If F = {0} and g = 0 equation (1) reduces to a regular nonlinear equation.
If F = {0} and g # 0 equation is again a regular nonlinear equation studied in
[2] and the references there. Here we are interested in generating a sequence
{z,} (n > 0) approximating z* in cases when F' = {0} and g = 0 or not.

The most popular method for approximating z* is undoubtedly Newton-like
method of the form

0 € f(wn) +g(wn) + (f/(zn) + [Zn—1, znag])(xn+l —xp) + F(Tny1) (2)

where f’(z) denotes the Fréchet-derivative of operator f and [z,y;g] simply
denoted by [z,y] is the first order divided difference of g at the points z, y
satisfying [z, y] € L(X,Y’), and

[z, 9)(y —2) = g(y) — g(z) forz#y. (3)
If g is Fréchet-differentiable at « € X then [z, z] = ¢'(x).
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Geoffroy and Pietrus provided a local convergence analysis for method (2)
in [7]. Here we are motivated by this paper, our work in [2] and optimiza-
tion considerations. Using more precise error estimates and a combination of
Lipschitz as well as center Lipschitz conditions on f’ and g we provide a finer
convergence analysis than before [5]-[7] with the advantages already stated in
the abstract of this paper.

2. Local Convergence Analysis of Method (2)

We need the definition of a divided difference of order 2 [9], the definition
Aubin continuity of a set-valued map [1] and a generalization of the Ioffe-
Tikhomirov theorem on fixed points of operators [6], [8].

Definition 1. We say that an operator in L(X, L(X,Y")) denoted by [z, v, z; ¢]
or simply [z,y, 2] is called a divided difference of order two of the operator
y: X — Y at the points z,y,z € X if

[IE,y,ZKZ*m) = [y,z] - [xay]
for all distinct points z, y and z from X. (4)
If g is twice Fréchet-differentiable at x € X then
_9"'(x)
[z, 2, 2] = 5 -

Definition 2. A set-valued map I'’X & Y is said to be M-pseudo-Lipschitz
about

(x0,y0) € Graph T'={(z,y) e X xY |y € T'(z)}
if there exist neighborhoods V' of yg and U of xg such that

e(T(w)NUT(w)) < Mllv—w| for all v,w € V. (5)
From now on we set for x € X, r > 0

Ulz,r)={ze X |||z —z| <r}.

Lemma 3. Let (X,p) be a Banach space, let T map X to the closed subsets
of X, let qo € X, and let r > 0, and X € [0,1) be such that the following hold
true:
dist(go, T'(q0)) < (1 —A), (6)
e(T(v) NU(qo,r), T(w)) < Ap(v,w) for all v,w € Ulqo,r). (7)
Then T has a fized point in U(qo,r). If T is single-valued, then x is the unique
fized point of T in U(qo,T).
We will make the following assumptions:
(A1) F has a closed graph;

(Ag) f is Fréchet differentiable in some neighborhood V of z*;
(As) g is differentiable at x*;
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(A4) f"is L-Lipschitz on V and Lg-center Lipschitz on V. That is there
exist positive constants L and Lg such that

I1F"(y1) — F'(y2) || < Lllyr — yll (8)
and
|1F'(y) — F'(2")|| < Lolly — 2™|| for all y,y1,y2 € V; (9)
(A5) there exists a positive constant K such that for all z,y,z € V,
[z, y, ]| < K; (10)

(Ag) the set-valued map
G(a)™' = [f(=") + f'(@") (@ — 27) + g(x) + F ()] (11)
is M-pseudo-Lipschitz around (0, z*).
We can state the main local convergence result for method (2):

Theorem 4. Under assumptions (A1)—(Ag) the following hold true:

for every ¢ > M(% + K) = ¢g there exists § > 0 such that for any distinct
initial guesses xo,x1 € U(x*,0), there exists a sequence {x,} (n > 0) generated
by Newton-like method (2) such that

[2n41 — 2" < cllzn — 2" max{{lzn — 2", [|on—1 —2"[|} (n = 1).  (12)
Before starting the proof it is convenient to define operators R,, and T}, by
Ru(z) = f(@")+g(@)+ f(z")(z—2)
— flan) = g(zn) = (f (2n) + [Tn-1,2a]) (@ — 20) (n>1)(13)
and
T(@) = G [Ra(@)] (n > 1). (14)
Note that 1 is a fixed point of Ty, if and only if Rg(zk41) € G(zg4t1), i€, if
and only if

o€ flax) +gler) + (' (xr) + [er—1, 2a]) (Tes1 — 2x) + Flar).  (15)

We also need the auxiliary result:

Proposition 5. Under the hypotheses of Theorem 4, there exists § > 0 such
that for all xg,x1 € U(x*,0) (xo, 21,2 distinct), the map Ty has a fized point
x9 in U(x*,d) satisfying

lz2 — 2*|| < ellzy — 2™ || max{[ler — 2|, [lzo — 27|} (16)
Proof. In view of (Ag) there exist positive constants a and b such that
(G y)NU (", a), G (12))
< Mlly1 — y2|| for all y1,y2 € U(0,b). (17)
Choose a fixed ¢ € (0,0p) where

1 2% 1/2
= 1 _— —_— . 1
% mm{“’c’<4L+Lo+8K> (18)
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We shall show conditions (6) and (7) of Lemma 3 hold true where ¢o = 2* and
T =T, for some constants 7 and A to be determined.
We first note that

dist(z*, T1(z*)) < e(G71(0) N U(2*,6), T1 (z)). (19)

Let zg,x1 € U(z*,0) such that xg, z; and z* are distinct, then we obtain in
turn by (3), (4), (8)-(10) and (18)

IR € @)+ ola) — F@n) = gla) — (@) + o.m)a* — )]
< @)~ fa) - Fan @ - o)
+lale) — glen) - fro. 1)@ - )]
= 1) - @) - Fla e - o)
+ lzo,z1.a”)(a" - a0)(a” — )]
< Dt 1 Klla — ol o -l
< (Gl =il + K" ol ) " = ]
< <§+K> Olla* — a1 < <§+K> 52 < b, (20)

by the choice of §.
In view of (17) we get

(G 0) UG, 6), Ty (a7))
= (G0 UG, 8), G R o)

L * * *
M (Gla =~ il 4 Kl ol ) o =l (21
Using (19) we obtain in turn

dist(x*, Ty (x¥))

IN

L * * *
M| 5l — il + Klla” = aol [ Ja* = ]

IN

L
M (5 + Kl = ol max{la” = ol = 1 12)
Choose c fixed and ¢ > M (% + K). Then there exist A € (0,1) such that
M(% 4+ K) <c(1—)). That is

dist(a", To(x)) < (1 — N)2* — 1 || max{[l2* — zoll |2 — z1ll}.  (23)

Letting go = «*, r =1 = ¢||la* — 1] max{||z* — xo], ||* — 21|} condition (6)
holds true.
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We shall show condition (7) also holds true. By dc < 1 and g, 21 € U(z*,0)
we have 1, < < a. Let € U(z*,0), then we get in turn
[Ri(2)]l < |If(z") = flz) = f'(z")(@" — )|
+ [If(z) = f(z1) = f/(@1)(z — 1)
+ [lg(z) — g(z1) — [x0, z1](x — 21|

< <L°’;4L + 4K> 5, (24)

which implies z1 (z) € U(0,b) for x € U(z*, ) by the choice of 6.
Let w,z € U(z*,r1) then by (17)

e(Ty(w) NU(z*,71), T1(z))

< e(Ty(w) NU(z*,6), Ti(z)) < M||Ry(w) — R1(2)||
< M||(F'(z") = F'(z1))(w = 2)[| + M|lg(w) — g(2) — [z, 21](w — 2]
< M|(F'(2") = F'(z1))(w = 2)|| + M| ([21, 2, w] (w — 1)
+ [wo, 21, w](w — o)) (z — w)|| < M(Lo + 4K)||z — w]. (25)
Without loss of generality we may assume
A
0 < m = Iy, (26)

which implies condition (7). By Lemma 3 there exists a fixed point xo €
U(z*,ry) for the map T7.
That completes the proof of Proposition 5. (]
Proof of Theorem 4. Using induction on k > 1 and setting
g ==z", 7= clzy -2 max{f|zg_1 — 2", [lxx — 27}

we conclude by Proposition 5 that the map T has a fixed point xj4; in
U(xz*,ry). It follows that

lonst — o7 < ellag — ol mas{ |z — 2, fonr — 2} (k> 1),
That completes the proof of Theorem 4. O
As in [7] we consider two modifications of method (2):
Remark 6. (a) If (2) is replaced by
0 € [(n) +9(n) + (f'(@n) + [20,2n]) @nss — 22) + Flanss)  (27)

then under hypotheses (A1)—(Ag) the conclusions of Theorem 4 hold with (12)
replaced by

[2n1 = 2™ < eflwn — 2% max{|jz, — 27|, [lzo — 27|} (28)
Note that regular-false method (27) [3] is slower than method (2).
(b) If (2) is replaced by
o€ f(xn) +y(zn) + (f/(xn) + [anrl? mn]) (Tpy1 — 2n) (29)
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or

0€ f(zn) + f/(xn)(wn-&-l — ) + 9(Tns1) + F(Tn41) (30)
then if ¢ > ¢q is replaced by ¢ > ¢; = % and (Hj) is dropped under hypotheses
(A1)—(A4) and (Ag) the conclusions of Theorem 4 hold true with (12) replaced
by the faster (quadratic convergence):

lznt1 = 2| < cllwn — ™. (31)

Remark 7. In general
Lo <L (32)
holds and L% can be arbitrarily large [2]-[4]. If equality holds in (32), then our

results reduce to the corresponding ones in [7]. Otherwise they constitute an
improvement. Indeed denote by §) and d; used in [7] and given by

1 2 12
0 _ 2
0y = min a’c’(4L+L+8K> (33)
and \
1_
o1 = M(L+4K)" (34)
It follows from (18), (26), (33) and (34) that
58 < (35)
and
5 <8y, (36)

Note also that the choice of ¢ influences the choice of c¢. In view of (35) and
(36) we conclude that under the same computational cost (since in practice
the computation of constant L requires the computation of Lg) and hypotheses
a larger convergence radius § and a smaller ratio ¢ can be obtained. These
observations are very important in computational mathematics [2]-[11].
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