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LOCAL CONVERGENCE OF NEWTON-LIKE METHODS
FOR GENERALIZED EQUATIONS

Ioannis K. Argyros

Abstract. We provide a local convergence analysis for Newton-like meth-

ods for the solution of generalized equations in a Banach space setting.

Using some ideas of ours introduced in [2] for nonlinear equations we show
that under weaker hypotheses and computational cost than in [7] a larger

convergence radius and finer error bounds on the distances involved can
be obtained.

1. Introduction

In this study we are concerned with the problem of approximating a solution
x∗ of the generalized equation

o ∈ f(x) + g(x) + F (x), (1)

where X, Y are Banach spaces, f : X → Y is a Fréchet-differentiable operator
in a neighborhood U of x∗, g : X → Y is continuous at x∗ and F denotes a
set-valued map from X into the subsets of Y .

If F = {0} and g = 0 equation (1) reduces to a regular nonlinear equation.
If F = {0} and g 6= 0 equation is again a regular nonlinear equation studied in
[2] and the references there. Here we are interested in generating a sequence
{xn} (n ≥ 0) approximating x∗ in cases when F = {0} and g = 0 or not.

The most popular method for approximating x∗ is undoubtedly Newton-like
method of the form

o ∈ f(xn) + g(xn) +
(
f ′(xn) + [xn−1, xn, g]

)
(xn+1 − xn) + F (xn+1) (2)

where f ′(x) denotes the Fréchet-derivative of operator f and [x, y; g] simply
denoted by [x, y] is the first order divided difference of g at the points x, y
satisfying [x, y] ∈ L(X,Y ), and

[x, y](y − x) = g(y)− g(x) for x 6= y. (3)

If g is Fréchet-differentiable at x ∈ X then [x, x] = g′(x).
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Geoffroy and Pietrus provided a local convergence analysis for method (2)
in [7]. Here we are motivated by this paper, our work in [2] and optimiza-
tion considerations. Using more precise error estimates and a combination of
Lipschitz as well as center Lipschitz conditions on f ′ and g we provide a finer
convergence analysis than before [5]–[7] with the advantages already stated in
the abstract of this paper.

2. Local Convergence Analysis of Method (2)

We need the definition of a divided difference of order 2 [9], the definition
Aubin continuity of a set-valued map [1] and a generalization of the Ioffe–
Tikhomirov theorem on fixed points of operators [6], [8].

Definition 1. We say that an operator in L(X,L(X,Y )) denoted by [x, y, z; g]
or simply [x, y, z] is called a divided difference of order two of the operator
y : X → Y at the points x, y, z ∈ X if

[x, y, z](z − x) = [y, z]− [x, y]
for all distinct points x, y and z from X. (4)

If g is twice Fréchet-differentiable at x ∈ X then

[x, x, x] =
g′′(x)

2
.

Definition 2. A set-valued map ΓX ⇔ Y is said to be M -pseudo-Lipschitz
about

(x0, y0) ∈ Graph Γ = {(x, y) ∈ X × Y | y ∈ Γ(x)}
if there exist neighborhoods V of y0 and U of x0 such that

e
(
Γ(v) ∩ U,Γ(w)

)
≤M‖v − w‖ for all v, w ∈ V. (5)

From now on we set for x ∈ X, r > 0

U(x, r) = {z ∈ X | ‖z − x‖ ≤ r}.

Lemma 3. Let (X, ρ) be a Banach space, let T map X to the closed subsets
of X, let q0 ∈ X, and let r > 0, and λ ∈ [0, 1) be such that the following hold
true:

dist(q0, T (q0)) < r(1− λ), (6)

e
(
T (v) ∩ U(q0, r), T (w)

)
≤ λρ(v, w) for all v, w ∈ U(q0, r). (7)

Then T has a fixed point in U(q0, r). If T is single-valued, then x is the unique
fixed point of T in U(q0, r).

We will make the following assumptions:
(A1) F has a closed graph;
(A2) f is Fréchet differentiable in some neighborhood V of x∗;
(A3) g is differentiable at x∗;



LOCAL CONVERGENCE OF NEWTON-LIKE METHODS 427

(A4) f ′ is L-Lipschitz on V and L0-center Lipschitz on V . That is there
exist positive constants L and L0 such that

‖F ′(y1)− F ′(y2)‖ ≤ L‖y1 − y‖ (8)

and
‖F ′(y)− F ′(x∗)‖ ≤ L0‖y − x∗‖ for all y, y1, y2 ∈ V ; (9)

(A5) there exists a positive constant K such that for all x, y, z ∈ V ,

‖[x, y, z]‖ ≤ K; (10)

(A6) the set-valued map

G(x)−1 = [f(x∗) + f ′(x∗)(x− x∗) + g(x) + F (x)]−1 (11)

is M -pseudo-Lipschitz around (0, x∗).
We can state the main local convergence result for method (2):

Theorem 4. Under assumptions (A1)–(A6) the following hold true:
for every c > M

(
L
2 + K

)
= c0 there exists δ > 0 such that for any distinct

initial guesses x0, x1 ∈ U(x∗, δ), there exists a sequence {xn} (n ≥ 0) generated
by Newton-like method (2) such that

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖max{‖xn − x∗‖, ‖xn−1 − x∗‖} (n ≥ 1). (12)

Before starting the proof it is convenient to define operators Rn and Tn by

Rn(x) = f(x∗) + g(x) + f ′(x∗)(x− x∗)
− f(xn)− g(xn)− (f ′(xn) + [xn−1, xn])(x− xn) (n ≥ 1)(13)

and
Tn(x) = G−1[Rn(x)] (n ≥ 1). (14)

Note that xk+1 is a fixed point of Tk if and only if Rk(xk+1) ∈ G(xk+1), i.e., if
and only if

o ∈ f(xk) + g(xk) +
(
f ′(xk) + [xk−1, xk]

)
(xk+1 − xk) + F (xk+1). (15)

We also need the auxiliary result:

Proposition 5. Under the hypotheses of Theorem 4, there exists δ > 0 such
that for all x0, x1 ∈ U(x∗, δ) (x0, x1, x

∗ distinct), the map T1 has a fixed point
x2 in U(x∗, δ) satisfying

‖x2 − x∗‖ ≤ c‖x1 − x∗‖max{‖x1 − xk‖, ‖x0 − x∗‖}. (16)

Proof. In view of (A6) there exist positive constants a and b such that

e
(
G−1(y1) ∩ U(x∗, a), G−1(y2)

)
≤ M‖y1 − y2‖ for all y1, y2 ∈ U(0, b). (17)

Choose a fixed δ ∈ (0, δ0) where

δ0 = min

{
a,

1
c
,

(
2b

4L+ L0 + 8K

)1/2
}
. (18)
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We shall show conditions (6) and (7) of Lemma 3 hold true where q0 = x∗ and
T = T1, for some constants r and λ to be determined.

We first note that

dist(x∗, T1(x∗)) ≤ e
(
G−1(0) ∩ U(x∗, δ), T1(x∗)

)
. (19)

Let x0, x1 ∈ U(x∗, δ) such that x0, x1 and x∗ are distinct, then we obtain in
turn by (3), (4), (8)–(10) and (18)

‖R1(x∗)‖ ≤ f(x∗) + g(x∗)− f(x1)− g(x1)− (f ′(x1) + [x0, x1])(x∗ − x1))‖
≤ ‖f(x∗)− f(x1)− f ′(x1)(x∗ − x1)‖

+ ‖g(x∗)− g(x1)− [x0, x1](x∗ − x1)‖
= ‖f(x∗)− f(x1)− f ′(x1)(x∗ − x1)‖

+ ‖[x0, x1, x
∗](x∗ − x0)(x∗ − x1)‖

≤ L

2
‖x∗ − x1‖2 +K‖x∗ − x0‖ · ‖x∗ − x1‖

≤
(
L

2
‖x∗ − x1‖+K‖x∗ − x0‖

)
‖x∗ − x1‖

≤
(
L

2
+K

)
δ‖x∗ − x1‖ ≤

(
L

2
+K

)
δ2 ≤ b, (20)

by the choice of δ.
In view of (17) we get

e
(
G−1(0) ∩ U(x∗, δ), T1(x∗)

)
= e

(
G−1(0) ∩ U(x∗, δ), G−1[R1(x∗)]

)
≤ M

(
L

2
‖x∗ − x1‖+K‖x∗ − x0‖

)
‖x∗ − x1‖. (21)

Using (19) we obtain in turn

dist(x∗, T1(x∗)) ≤ M

[
L

2
‖x∗ − x1‖+K‖x∗ − x0‖

]
‖x∗ − x1‖

≤ M

(
L

2
+K

)
‖x∗ − x1‖max{‖x∗ − x0‖, ‖x∗ − x1‖}.(22)

Choose c fixed and c > M
(

L
2 + K

)
. Then there exist λ ∈ (0, 1) such that

M
(

L
2 +K

)
≤ c(1− λ). That is

dist(x∗, T0(x∗)) ≤ c(1− λ)‖x∗ − x1‖max{‖x∗ − x0‖, ‖x∗ − x1‖}. (23)

Letting q0 = x∗, r = r1 = c‖x∗ − x1‖max{‖x∗ − x0‖, ‖x∗ − x1‖} condition (6)
holds true.
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We shall show condition (7) also holds true. By δc < 1 and x0, x1 ∈ U(x∗, δ)
we have r1 ≤ δ ≤ a. Let x ∈ U(x∗, δ), then we get in turn

‖R1(x)‖ ≤ ‖f(x∗)− f(x)− f ′(x∗)(x∗ − x)‖
+ ‖f(x)− f(x1)− f ′(x1)(x− x1)‖
+ ‖g(x)− g(x1)− [x0, x1](x− x1)‖

≤
(
L0 + 4L

2
+ 4K

)
δ2, (24)

which implies z1(x) ∈ U(0, b) for x ∈ U(x∗, δ) by the choice of δ.
Let w, z ∈ U(x∗, r1) then by (17)

e
(
T1(w) ∩ U(x∗, r1), T1(z)

)
≤ e

(
T1(w) ∩ U(x∗, δ), T1(z)

)
≤M‖R1(w)−R1(z)‖

≤ M‖(F ′(x∗)− F ′(x1))(w − z)‖+M‖g(w)− g(z)− [x0, x1](w − z)‖
≤ M‖(F ′(x∗)− F ′(x1))(w − z)‖+M‖

(
[x1, z, w](w − x1)

+ [x0, x1, w](w − x0)
)
(z − w)‖ ≤Mδ(L0 + 4K)‖z − w‖. (25)

Without loss of generality we may assume

δ <
λ

M(L0 + 4K)
= δ1, (26)

which implies condition (7). By Lemma 3 there exists a fixed point x2 ∈
U(x∗, r1) for the map T1.

That completes the proof of Proposition 5. �

Proof of Theorem 4. Using induction on k ≥ 1 and setting

q0 = x∗, rk = c‖xk − x∗‖max{‖xk−1 − x∗‖, ‖xk − x∗‖}
we conclude by Proposition 5 that the map Tk has a fixed point xk+1 in
U(x∗, rk). It follows that

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖max{‖xk − x∗‖, ‖xk−1 − x∗‖} (k ≥ 1).

That completes the proof of Theorem 4. �

As in [7] we consider two modifications of method (2):

Remark 6. (a) If (2) is replaced by

o ∈ f(xn) + g(xn) +
(
f ′(xn) + [x0, xn]

)
(xn+1 − xn) + F (xn+1) (27)

then under hypotheses (A1)–(A6) the conclusions of Theorem 4 hold with (12)
replaced by

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖max{‖xn − x∗‖, ‖x0 − x∗‖}. (28)

Note that regular-false method (27) [3] is slower than method (2).
(b) If (2) is replaced by

o ∈ f(xn) + y(xn) +
(
f ′(xn) + [xn+1, xn]

)
(xn+1 − xn) (29)
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or
o ∈ f(xn) + f ′(xn)(xn+1 − xn) + g(xn+1) + F (xn+1) (30)

then if c > c0 is replaced by c > c1 = ML
2 and (H5) is dropped under hypotheses

(A1)–(A4) and (A6) the conclusions of Theorem 4 hold true with (12) replaced
by the faster (quadratic convergence):

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖2. (31)

Remark 7. In general
L0 ≤ L (32)

holds and L
L0

can be arbitrarily large [2]–[4]. If equality holds in (32), then our
results reduce to the corresponding ones in [7]. Otherwise they constitute an
improvement. Indeed denote by δ00 and δ11 used in [7] and given by

δ00 = min

{
a,

1
c
,

(
2b

4L+ L+ 8K

)1/2
}

(33)

and

δ11 =
λ

M(L+ 4K)
. (34)

It follows from (18), (26), (33) and (34) that

δ00 ≤ δ0 (35)

and
δ11 ≤ δ1. (36)

Note also that the choice of δ influences the choice of c. In view of (35) and
(36) we conclude that under the same computational cost (since in practice
the computation of constant L requires the computation of L0) and hypotheses
a larger convergence radius δ and a smaller ratio c can be obtained. These
observations are very important in computational mathematics [2]–[11].
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