

LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR GENERALIZED EQUATIONS

Ioannis K. Argyros

ABSTRACT. We provide a local convergence analysis for Newton-like methods for the solution of generalized equations in a Banach space setting. Using some ideas of ours introduced in [2] for nonlinear equations we show that under weaker hypotheses and computational cost than in [7] a larger convergence radius and finer error bounds on the distances involved can be obtained.

1. Introduction

In this study we are concerned with the problem of approximating a solution x^* of the generalized equation

$$o \in f(x) + g(x) + F(x), \tag{1}$$

where X, Y are Banach spaces, $f: X \to Y$ is a Fréchet-differentiable operator in a neighborhood U of $x^*, g: X \to Y$ is continuous at x^* and F denotes a set-valued map from X into the subsets of Y.

If $F = \{0\}$ and g = 0 equation (1) reduces to a regular nonlinear equation. If $F = \{0\}$ and $g \neq 0$ equation is again a regular nonlinear equation studied in [2] and the references there. Here we are interested in generating a sequence $\{x_n\}$ $(n \geq 0)$ approximating x^* in cases when $F = \{0\}$ and g = 0 or not.

The most popular method for approximating x^* is undoubtedly Newton-like method of the form

$$o \in f(x_n) + g(x_n) + (f'(x_n) + [x_{n-1}, x_n, g])(x_{n+1} - x_n) + F(x_{n+1})$$
 (2)

where f'(x) denotes the Fréchet-derivative of operator f and [x, y; g] simply denoted by [x, y] is the first order divided difference of g at the points x, y satisfying $[x, y] \in L(X, Y)$, and

$$[x, y](y - x) = g(y) - g(x) \text{ for } x \neq y.$$
 (3)

If g is Fréchet-differentiable at $x \in X$ then [x, x] = g'(x).

Received October 9, 2008; Accepted April 8, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 65H10, 65G99, 47H17, 49M15.

Key words and phrases. Newton-like methods, Banach space, local convergence, radius of convergence, generalized equations, Fréchet derivative, Lipschitz/center-Lipschitz condition.

Geoffroy and Pietrus provided a local convergence analysis for method (2) in [7]. Here we are motivated by this paper, our work in [2] and optimization considerations. Using more precise error estimates and a combination of Lipschitz as well as center Lipschitz conditions on f' and g we provide a finer convergence analysis than before [5]–[7] with the advantages already stated in the abstract of this paper.

2. Local Convergence Analysis of Method (2)

We need the definition of a divided difference of order 2 [9], the definition Aubin continuity of a set-valued map [1] and a generalization of the Ioffe–Tikhomirov theorem on fixed points of operators [6], [8].

Definition 1. We say that an operator in L(X, L(X, Y)) denoted by [x, y, z; g] or simply [x, y, z] is called a divided difference of order two of the operator $y: X \to Y$ at the points $x, y, z \in X$ if

$$[x, y, z](z - x) = [y, z] - [x, y]$$
 for all distinct points x, y and z from X . (4)

If g is twice Fréchet-differentiable at $x \in X$ then

$$[x, x, x] = \frac{g''(x)}{2}.$$

Definition 2. A set-valued map $\Gamma X = Y$ is said to be M-pseudo-Lipschitz about

$$(x_0, y_0) \in \text{Graph } \Gamma = \{(x, y) \in X \times Y \mid y \in \Gamma(x)\}\$$

if there exist neighborhoods V of y_0 and U of x_0 such that

$$e(\Gamma(v) \cap U, \Gamma(w)) \le M||v - w|| \text{ for all } v, w \in V.$$
 (5)

From now on we set for $x \in X$, r > 0

$$U(x,r) = \{ z \in X \mid ||z - x|| < r \}.$$

Lemma 3. Let (X, ρ) be a Banach space, let T map X to the closed subsets of X, let $q_0 \in X$, and let r > 0, and $\lambda \in [0, 1)$ be such that the following hold true:

$$\operatorname{dist}(q_0, T(q_0)) < r(1 - \lambda), \tag{6}$$

$$e(T(v) \cap U(q_0, r), T(w)) \le \lambda \rho(v, w) \text{ for all } v, w \in U(q_0, r).$$
 (7)

Then T has a fixed point in $U(q_0, r)$. If T is single-valued, then x is the unique fixed point of T in $U(q_0, r)$.

We will make the following assumptions:

- (A_1) F has a closed graph;
- (A_2) f is Fréchet differentiable in some neighborhood V of x^* ;
- (A_3) g is differentiable at x^* ;

 (A_4) f' is L-Lipschitz on V and L_0 -center Lipschitz on V. That is there exist positive constants L and L_0 such that

$$||F'(y_1) - F'(y_2)|| \le L||y_1 - y|| \tag{8}$$

and

$$||F'(y) - F'(x^*)|| \le L_0 ||y - x^*|| \text{ for all } y, y_1, y_2 \in V;$$
 (9)

 (A_5) there exists a positive constant K such that for all $x, y, z \in V$,

$$||[x, y, z]|| \le K; \tag{10}$$

(A₆) the set-valued map

$$G(x)^{-1} = [f(x^*) + f'(x^*)(x - x^*) + g(x) + F(x)]^{-1}$$
(11)

is M-pseudo-Lipschitz around $(0, x^*)$.

We can state the main local convergence result for method (2):

Theorem 4. Under assumptions (A_1) – (A_6) the following hold true:

for every $c > M(\frac{L}{2} + K) = c_0$ there exists $\delta > 0$ such that for any distinct initial guesses $x_0, x_1 \in U(x^*, \delta)$, there exists a sequence $\{x_n\}$ $(n \ge 0)$ generated by Newton-like method (2) such that

$$||x_{n+1} - x^*|| \le c||x_n - x^*|| \max\{||x_n - x^*||, ||x_{n-1} - x^*||\} \ (n \ge 1).$$

Before starting the proof it is convenient to define operators R_n and T_n by

$$R_n(x) = f(x^*) + g(x) + f'(x^*)(x - x^*) - f(x_n) - g(x_n) - (f'(x_n) + [x_{n-1}, x_n])(x - x_n) \quad (n \ge 1) (13)$$

and

$$T_n(x) = G^{-1}[R_n(x)] \quad (n \ge 1).$$
 (14)

Note that x_{k+1} is a fixed point of T_k if and only if $R_k(x_{k+1}) \in G(x_{k+1})$, i.e., if and only if

$$o \in f(x_k) + g(x_k) + (f'(x_k) + [x_{k-1}, x_k])(x_{k+1} - x_k) + F(x_{k+1}).$$
 (15)

We also need the auxiliary result:

Proposition 5. Under the hypotheses of Theorem 4, there exists $\delta > 0$ such that for all $x_0, x_1 \in U(x^*, \delta)$ $(x_0, x_1, x^* \text{ distinct})$, the map T_1 has a fixed point x_2 in $U(x^*, \delta)$ satisfying

$$||x_2 - x^*|| \le c||x_1 - x^*|| \max\{||x_1 - x^k||, ||x_0 - x^*||\}.$$
(16)

Proof. In view of (A_6) there exist positive constants a and b such that

$$e(G^{-1}(y_1) \cap U(x^*, a), G^{-1}(y_2))$$

$$\leq M \|y_1 - y_2\| \text{ for all } y_1, y_2 \in U(0, b).$$
(17)

Choose a fixed $\delta \in (0, \delta_0)$ where

$$\delta_0 = \min \left\{ a, \frac{1}{c}, \left(\frac{2b}{4L + L_0 + 8K} \right)^{1/2} \right\}. \tag{18}$$

We shall show conditions (6) and (7) of Lemma 3 hold true where $q_0 = x^*$ and $T = T_1$, for some constants r and λ to be determined.

We first note that

$$\operatorname{dist}(x^*, T_1(x^*)) \le e(G^{-1}(0) \cap U(x^*, \delta), T_1(x^*)). \tag{19}$$

Let $x_0, x_1 \in U(x^*, \delta)$ such that x_0, x_1 and x^* are distinct, then we obtain in turn by (3), (4), (8)–(10) and (18)

$$||R_{1}(x^{*})|| \leq f(x^{*}) + g(x^{*}) - f(x_{1}) - g(x_{1}) - (f'(x_{1}) + [x_{0}, x_{1}])(x^{*} - x_{1}))||$$

$$\leq ||f(x^{*}) - f(x_{1}) - f'(x_{1})(x^{*} - x_{1})||$$

$$+ ||g(x^{*}) - g(x_{1}) - [x_{0}, x_{1}](x^{*} - x_{1})||$$

$$= ||f(x^{*}) - f(x_{1}) - f'(x_{1})(x^{*} - x_{1})||$$

$$+ ||[x_{0}, x_{1}, x^{*}](x^{*} - x_{0})(x^{*} - x_{1})||$$

$$\leq \frac{L}{2}||x^{*} - x_{1}||^{2} + K||x^{*} - x_{0}|| \cdot ||x^{*} - x_{1}||$$

$$\leq \left(\frac{L}{2}||x^{*} - x_{1}|| + K||x^{*} - x_{0}||\right)||x^{*} - x_{1}||$$

$$\leq \left(\frac{L}{2} + K\right)\delta||x^{*} - x_{1}|| \leq \left(\frac{L}{2} + K\right)\delta^{2} \leq b, \tag{20}$$

by the choice of δ .

In view of (17) we get

$$e(G^{-1}(0) \cap U(x^*, \delta), T_1(x^*))$$

$$= e(G^{-1}(0) \cap U(x^*, \delta), G^{-1}[R_1(x^*)])$$

$$\leq M\left(\frac{L}{2}\|x^* - x_1\| + K\|x^* - x_0\|\right)\|x^* - x_1\|.$$
(21)

Using (19) we obtain in turn

$$\operatorname{dist}(x^*, T_1(x^*)) \leq M \left[\frac{L}{2} \|x^* - x_1\| + K \|x^* - x_0\| \right] \|x^* - x_1\|$$

$$\leq M \left(\frac{L}{2} + K \right) \|x^* - x_1\| \max\{\|x^* - x_0\|, \|x^* - x_1\|\} (22)$$

Choose c fixed and $c>M\left(\frac{L}{2}+K\right)$. Then there exist $\lambda\in(0,1)$ such that $M\left(\frac{L}{2}+K\right)\leq c(1-\lambda)$. That is

$$\operatorname{dist}(x^*, T_0(x^*)) \le c(1 - \lambda) \|x^* - x_1\| \max\{\|x^* - x_0\|, \|x^* - x_1\|\}. \tag{23}$$

Letting $q_0 = x^*$, $r = r_1 = c||x^* - x_1|| \max\{||x^* - x_0||, ||x^* - x_1||\}$ condition (6) holds true.

We shall show condition (7) also holds true. By $\delta c < 1$ and $x_0, x_1 \in U(x^*, \delta)$ we have $r_1 \leq \delta \leq a$. Let $x \in U(x^*, \delta)$, then we get in turn

$$||R_{1}(x)|| \leq ||f(x^{*}) - f(x) - f'(x^{*})(x^{*} - x)|| + ||f(x) - f(x_{1}) - f'(x_{1})(x - x_{1})|| + ||g(x) - g(x_{1}) - [x_{0}, x_{1}](x - x_{1})|| \leq \left(\frac{L_{0} + 4L}{2} + 4K\right)\delta^{2},$$
(24)

which implies $z_1(x) \in U(0,b)$ for $x \in U(x^*,\delta)$ by the choice of δ .

Let $w, z \in U(x^*, r_1)$ then by (17)

$$e(T_{1}(w) \cap U(x^{*}, r_{1}), T_{1}(z))$$

$$\leq e(T_{1}(w) \cap U(x^{*}, \delta), T_{1}(z)) \leq M \|R_{1}(w) - R_{1}(z)\|$$

$$\leq M \|(F'(x^{*}) - F'(x_{1}))(w - z)\| + M \|g(w) - g(z) - [x_{0}, x_{1}](w - z)\|$$

$$\leq M \|(F'(x^{*}) - F'(x_{1}))(w - z)\| + M \|([x_{1}, z, w](w - x_{1}) + [x_{0}, x_{1}, w](w - x_{0}))(z - w)\| \leq M \delta(L_{0} + 4K)\|z - w\|.$$
(25)

Without loss of generality we may assume

$$\delta < \frac{\lambda}{M(L_0 + 4K)} = \delta_1,\tag{26}$$

which implies condition (7). By Lemma 3 there exists a fixed point $x_2 \in U(x^*, r_1)$ for the map T_1 .

Proof of Theorem 4. Using induction on $k \geq 1$ and setting

$$q_0 = x^*, \quad r_k = c \|x_k - x^*\| \max\{\|x_{k-1} - x^*\|, \|x_k - x^*\|\}$$

we conclude by Proposition 5 that the map T_k has a fixed point x_{k+1} in $U(x^*, r_k)$. It follows that

$$||x_{k+1} - x^*|| \le c||x_k - x^*|| \max\{||x_k - x^*||, ||x_{k-1} - x^*||\} \quad (k \ge 1).$$

That completes the proof of Theorem 4.

As in [7] we consider two modifications of method (2):

Remark 6. (a) If (2) is replaced by

$$o \in f(x_n) + g(x_n) + (f'(x_n) + [x_0, x_n])(x_{n+1} - x_n) + F(x_{n+1})$$
(27)

then under hypotheses (A_1) – (A_6) the conclusions of Theorem 4 hold with (12) replaced by

$$||x_{n+1} - x^*|| \le c||x_n - x^*|| \max\{||x_n - x^*||, ||x_0 - x^*||\}.$$
 (28)

Note that regular-false method (27) [3] is slower than method (2).

(b) If (2) is replaced by

$$o \in f(x_n) + y(x_n) + (f'(x_n) + [x_{n+1}, x_n])(x_{n+1} - x_n)$$
(29)

or

$$o \in f(x_n) + f'(x_n)(x_{n+1} - x_n) + g(x_{n+1}) + F(x_{n+1})$$
(30)

then if $c > c_0$ is replaced by $c > c_1 = \frac{ML}{2}$ and (H₅) is dropped under hypotheses (A_1) - (A_4) and (A_6) the conclusions of Theorem 4 hold true with (12) replaced by the faster (quadratic convergence):

$$||x_{n+1} - x^*|| \le c||x_n - x^*||^2.$$
(31)

Remark 7. In general

$$L_0 \le L \tag{32}$$

holds and $\frac{L}{L_0}$ can be arbitrarily large [2]–[4]. If equality holds in (32), then our results reduce to the corresponding ones in [7]. Otherwise they constitute an improvement. Indeed denote by δ_0^0 and δ_1^1 used in [7] and given by

$$\delta_0^0 = \min \left\{ a, \frac{1}{c}, \left(\frac{2b}{4L + L + 8K} \right)^{1/2} \right\}$$
 (33)

and

$$\delta_1^1 = \frac{\lambda}{M(L+4K)} \,. \tag{34}$$

It follows from (18), (26), (33) and (34) that

$$\delta_0^0 \le \delta_0 \tag{35}$$

and

$$\delta_1^1 \le \delta_1. \tag{36}$$

Note also that the choice of δ influences the choice of c. In view of (35) and (36) we conclude that under the same computational cost (since in practice the computation of constant L requires the computation of L_0) and hypotheses a larger convergence radius δ and a smaller ratio c can be obtained. These observations are very important in computational mathematics [2]-[11].

References

- [1] Aubin, J.-P., Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111.
- Argyros, I. K., A unifying local-semilocal convergence analysis and applications for twopoint Newton-like methods in Banach space, J. Math. Anal. Applic. 298 (2004), 374–397.
- Argyros, I. K., Newton Methods, Nova Science Publ. Inc., New York, 2005.
- [4] Argyros, I. K., On the secant method for solving nonsmooth equations, J. Math. Anal. Appl. (to appear, 2006).
- [5] Dontchev, A. L. and Hager, W. W., An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-484.
- [6] Dontchev, A. L., Local convergence of the Newton method for generalized equations, C. R. Acad. Sci. Paris, t. 332, Série I (1996), 327–331, Mathematical Analysis.
- [7] Geoffory, M. H. and Pietrus, A., A local convergence of some iterative methods for generalized equations, J. Math. Anal. Applic. 290 (2004), 497–505.
- Ioffe, A. D. and Tikhomirov, V. M., Theory of Extremal Problems, North Holland, Amsterdam, 1979.

- [9] Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
- [10] Rockafellar, R. T., Lipschitz properties of multifunctions, Nonlinear Analysis, 9 (1985), 867–885.
- [11] Xiao, B. and Harker, P. T., A nonsmooth Newton method for variational inequalities I: Theory, Math. Programming, 65 (1994), 151–194.

IOANNIS K. ARGYROS CAMERON UNIVERSITY DEPARTMENT OF MATHEMATICAL SCIENCES LAWTON, OK 73505, USA

 $E\text{-}mail\ address{:}\ \mathtt{iargyros@cameron.edu}$