Characteristics of Sucrose Thermal Degradation with High Temperature and High Pressure Treatment

  • Woo, Koan-Sik (National Institute of Crop Science, Rural Development Administration) ;
  • Hwang, In-Guk (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Youn-Ri (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Jun-Soo (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2009.06.30

Abstract

Thermal degradation characteristics of sucrose was investigated. A 20% sucrose solution was heated to temperatures of $110-150^{\circ}C$ for 1-5 hr. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugars, electron donating ability (EDA), and ascorbic acid equivalent antioxidant capacity (AEAC) of the heated sucrose solutions were evaluated. With increasing temperatures and times, the L-, a-, and b-values decreased; however, total color difference (${\Delta}E_{ab}$) increased. The pH and sucrose contents decreased, and fructose and glucose contents increased with increasing heating temperature and time. Organic acids, such as formic acid, lactic acid, and levulinic acid, and HMF contents increased with increasing heating temperatures and times. EDA (%) and the AEAC of the heated sucrose solutions increased with increasing heating temperature and time. The heated sucrose solution was more effective than unheated sucrose solution, having higher EDA (90 fold), and AEAC (13 fold).

Keywords

References

  1. Quintas MAC, Brandao TRS, Silva CLM. Modelling autocatalytic behaviour of a food model system-sucrose thermal degradation at high concentrations. J. Food Eng. 78: 537-545 (2007) https://doi.org/10.1016/j.jfoodeng.2005.10.031
  2. BeMiller JN, Whistler RL. Carbohydrates. pp. 157-224. In: Food Chemistry. Fennema OR (ed). 3rd ed. Marcel Dekker, Inc. New York, NY, USA (1996)
  3. Baisier WM, Labuza TP. Maillard browning kinetics in a liquid model system. J. Agr. Food Chem. 40: 707-713 (1992) https://doi.org/10.1021/jf00017a001
  4. Imming R, Buczys R, Lehnberger A, Bliesener KM. A new approach to the kinetics of colour formation in concentrated carbohydrate solutions. Starch/Starke 48: 163-166 (1996) https://doi.org/10.1002/star.19960480502
  5. van Boekel MAJS. Kinetic aspects of the Maillard reaction: A critical review. Nahrung 45: 150-159 (2001) https://doi.org/10.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9
  6. Quintas MAC, Guimaraes C, Baylina J, Brandao TRS, Silva CLM. Multiresponse modelling of the caramelisation reaction. Innov. Food Sci. Emerg. 8: 306-315 (2007) https://doi.org/10.1016/j.ifset.2007.02.002
  7. Clarke MA, Edye LA, Eggleston G. Sucrose decomposition in aqueous solution and losses in sugar manufacture and refining. Adv. Carbohyd. Chem. Bi. 52: 441-470 (1997) https://doi.org/10.1016/S0065-2318(08)60095-5
  8. Eggleston G, Vercellotti JR. Degradation of sucrose, glucose, and fructose in concentrated aqueous solutions under constant pH conditions at elevated temperature. J. Carbohyd. Chem. 19: 1305-1318 (2000) https://doi.org/10.1080/07328300008544153
  9. Lowary TL, Richards GN. Effects of impurities on hydrolysis of sucrose in concentrated aqueous solutions. Int. Sugar J. 90: 164-167 (1988)
  10. Buera MP, Chirifie J, Resnik SL, Wetzler G. Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to Maillard's reaction between different single sugars and glycine and comparison with caramelization browning. J. Food Sci. 52: 1063-1066 (1987) https://doi.org/10.1111/j.1365-2621.1987.tb14276.x
  11. Schoebel T, Tannenbaum SR, Labuza TP. Reaction at limited water concentration-1. Sucrose hydrolysis. J. Food Sci. 34: 324-329 (1969) https://doi.org/10.1111/j.1365-2621.1969.tb10355.x
  12. Eggleston G, Trask-Morrel B, Vercellotti JR. Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues. J. Agr. Food Chem. 44: 3319-3325 (1996) https://doi.org/10.1021/jf950836z
  13. Eggleston G. Deterioration of cane juice-sources and indicators. Food Chem. 78: 95-103 (2002) https://doi.org/10.1016/S0308-8146(01)00390-9
  14. Haghighat KS, Kimura Y, Oomori T, Matsuno R, Adachi S. Kinetics on sucrose decomposition in subcritical water. LWT-Food Sci. Technol. 38: 297-302 (2005) https://doi.org/10.1016/j.lwt.2004.06.005
  15. Karel M, Labuza TP. Nonenzymatic browning in model systems containing sucrose. J. Agr. Food Chem. 16: 717-719 (1968) https://doi.org/10.1021/jf60159a027
  16. Labuza TP, Tannenbaum SR, Karel M. Water content and stability of low moisture and intermediate-moisture foods. Food Technol. -Chicago 24: 543-548 (1970)
  17. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 50: 3010-3014 (2002) https://doi.org/10.1021/jf0115589
  18. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381-387 (2006) https://doi.org/10.1016/j.foodchem.2005.08.004
  19. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 331-336 (2006)
  20. Woo KS, Hwang IG, Kim TM, Kim DJ, Hong JT, Jeong HS. Changes in the antioxidant activity of onion (Allium cepa) extracts with heat treatment. Food Sci. Biotechnol. 16: 828-831 (2007)
  21. Lee YR, Hwang IG, Woo KS, Kim DJ, Hong JT, Jeong HS. Antioxidative activities of the ethyl acetate fraction from heated onion (Allium cepa). Food Sci. Biotechnol. 16: 1041-1045 (2007)
  22. Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee J, Jeong HS. Change of Korean ginseng components with high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 521-525 (2006)
  23. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. Changes of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J. Food Sci. Technol. 38: 342-347 (2006)
  24. Hwang IG, Woo KS, Kim DJ, Hong JT, Hwang BY, Lee YR, Jeong HS. Isolation and identification of an antioxidant substance from heated garlic (Allium sativum L.). Food Sci. Biotechnol. 16: 963- 966 (2007)
  25. Woo KS, Yoon HS, Lee YR, Lee J, Kim DJ, Hong JT, Jeong HS. Characteristics and antioxidative activity of volatile compounds in heated garlic (Allium sativum). Food Sci. Biotechnol. 16: 822-827 (2007)
  26. Sturm K, Koron D, Stampar F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 83: 417-422 (2003) https://doi.org/10.1016/S0308-8146(03)00124-9
  27. Tepe B, Sokmen M, Akpulat HA, Sokmen A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 95: 200-204 (2006) https://doi.org/10.1016/j.foodchem.2004.12.031
  28. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice EC. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  29. Leong LP, Shui G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 76: 69-75 (2002) https://doi.org/10.1016/S0308-8146(01)00251-5
  30. Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith Jr RL, Arai K. Reactions of D-fructose in water at temperatures up to 400${^{\circ}C}$ and pressures up to 100 MPa. J. Supercrit. Fluid 42: 110-119 (2007) https://doi.org/10.1016/j.supflu.2006.12.017
  31. Aida TM, Saito Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa. J. Supercrit. Fluid 40: 381-388 (2007) https://doi.org/10.1016/j.supflu.2006.07.027
  32. Shaw PE, Tatum JH, Berry RE. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, a degradation product of a hexose. Carbohyd. Res. 16: 207-211 (1971) https://doi.org/10.1016/S0008-6215(00)86115-7
  33. Kim HJ, Taub IA. Intrinsic chemical markers for aseptic processing of particulate foods. Food Technol. -Chicago 47: 91-97 (1993)
  34. Lansalot MC, Moreau C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal. Commun. 4: 517-520 (2003) https://doi.org/10.1016/S1566-7367(03)00133-X
  35. Bachmann S, Meier M, Kanzig A. 5-Hydroxymethyl-2-furfural (HMF) in Lebensmitteln. Lebensmit Telchemie 51: 49-50 (1997)
  36. Schultheiss J, Jensen D, Galensa R. Hydroxymethylfurfural und furfural in kaffeeproben: HPLC-biosensor-kopplung mit supressionstechnik. Lebensmit Telchemie 53: 159 (1999)
  37. Tosi E, Ciappini M, Re E, Lucero H. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem. 77: 71-74 (2002) https://doi.org/10.1016/S0308-8146(01)00325-9
  38. Antal MJ, Mok WSL, Richards GN. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohyd. Res. 199: 91-109 (1990) https://doi.org/10.1016/0008-6215(90)84096-D
  39. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Tech. 11: 340-346 (2001) https://doi.org/10.1016/S0924-2244(01)00014-0
  40. Kim MJ, Kim CY, Park I. Prevention of enzymatic browning of pear by onion extract. Food Chem. 89: 181-184 (2005) https://doi.org/10.1016/j.foodchem.2004.02.018
  41. Yen GC, Hsieh PP. Antioxidantive activity and scavenging effects on active oxygen of xylose-lysine maillard reaction products. J. Sci. Food Agr. 67: 415-420 (1995) https://doi.org/10.1002/jsfa.2740670320
  42. Yilmaz Y, Toledo R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 93: 273-278 (2005) https://doi.org/10.1016/j.foodchem.2004.09.043
  43. Osada Y, Shibamoto T. Antioxidative activity of volatile extracts from Maillard model systems. Food Chem. 98: 22-28 (2006) https://doi.org/10.1016/j.foodchem.2005.05.084