Influence of Amount of Waste Nutrient Solution and Compost on Growth and Quality of Tomato Grown by Fertigation

폐양액 관비량과 퇴비 시용량이 토마토의 생육과 품질에 미치는 영향

  • Zhang, Cheng-Hao (Vegetables Institute, Zhejiang Academy of Agricultural Science) ;
  • Kang, Ho-Min (Department of Horticulture, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University)
  • Published : 2009.06.30

Abstract

Waste nutrient solution (WNS) that composed of nutrient solution of horticultural research institute in Japan and used for culture tomato in perlite hydroponics showed $1.9{\sim}2.4$ dS/m of EC and $5.5{\sim}7.1$ of pH. Although $NH_{4}^+$-N concentration of WNS decreased remarkably, the others did not change significantly as compared with supplied solution. The growth characteristics such as plant height, stem diameter, leaf length, and leaf width were increased as amount of compost was increased in 1 L WNS supply treatment. But there was not any regular tendency on growth characteristics in 2 L/plant WNS supply treatment. The chlorophyll content of tomato leaf was highest in I L/plant WNS supply and 4,000 kg/10a compost treatment. The fresh and dry weight, and yield of tomato fruit also increased with increase of amount of WNS and compost, and they were highest in 1 L WNS supply and 4,000 kg/10a compost treatment. The sugar content of tomato fruits was not influenced by amount of WNS and compost, fructose and glucose and total sugar was highest in 2 L/plant WNS supply and 2,000 kg/10a compost treatment. Therefore fertigation culture used WNS is environmentally friendly and can guarantee yield and quality of tomato fruits and growth of tomato plants.

토마토의 펄라이트 배지경에서 공급했던 일본원시배양액의 폐양액은 EC는 $1.9{\sim}2.4dS/m$, pH는$5.5{\sim}7.1$의 범위였으며 다량 원소의 농도는 $NH_{4}^+$가 감소하였을 뿐 대부분 공급양액과 큰 차이가 없었다. 토마토 폐양액의 1L 관비시 퇴비시비량의 증가에 따라 토마토의 초장, 경경, 엽장, 엽폭 등 일반생육과 잎의 엽록소 함량이 현저히 좋아지는 경향을 보였으나 2L 관비처리에서는 일정한 경향이 없었다. 토마토 잎의 엽록소 함량은 주당 1L, 퇴비량이 4,000kg/10a 처리구에서 가장 높게 나타났다. 토마토 식물체의 생체중과 건물중도 폐양액의 1L 관비시 퇴비시비량의 증가에 따라 증가하는 경향이었으나 2L에서는 일정하지 않았다. 토마토의 수량도 일반생육과 비슷한 경향으로 관비량과 퇴비량 증가에 따라 증가하는 경향을 보여 관비량 1L, 퇴비량 4,000kg/10a 처리구에서 가장 많았다. 당도는 퇴비량과 관비량에 따른 일정한 경향이 없었으며 관비량 2L, 퇴비량 2,000kg/10a 처리구에서 fructose. glucose 및 총 당함량이 가장 높았다. 그러므로 이상의 결과로 볼 때 폐양액을 이용한 친환경적인 관비재배가 가능하며, 또한 관비재배에서 품질도 보장 할 수 있다고 판단된다.

Keywords

References

  1. Benoit, F. 1992. Practical guide for simple soilless culture techniques. p. 33. European Vegetable R&D center, Belgium
  2. Choi, H.S., HJ. Lee, Y.M. Seo, J.Y. Lee, and Y.B. Lee. 2000. The cultural fluid selective examination for fertigation of tomato plants and EC investigation. Kor. J. Hort. Sci. & Technol. 18(SUPPL.):183
  3. Ikeda, H. and T. Osawa. 1981. Nitrate and ammoniumN absorption by vegetables from nutrient solution containing ammonium nitrate and the resulant change of solution pH. J. Japan. Soc. Hort. Sci. 50:225-230 https://doi.org/10.2503/jjshs.50.225
  4. Jung, K.J., H.J. Kim, Y.W Seo, J.M. Chung, and K.J. Choi. 2000. Change of application of organic matter on physio-chemical property of soil cultured with cucumber under greenhouse. Kor. J. Hort. Sci. Technol. 18(SUPPL.):702
  5. Lee, C.S., B.L. Huh, Y.S. Song, and H. K. Kwak. 1994. Reivsed rates of npk fertilizers based on soil testing for vegetable crops. Korean. J. Soil. Fert. 27:85-91
  6. Lee, S.S. S.B. Kim, and Y.B. Park. 2006. Effect of fertigation method on the growth and fruit yield of greenhouse tomatoes. J. Bio-Envin. Cont. 15(SUPPL.):206-210
  7. Lunt, O.R. and B. Clark. 1959. Bark and wood fragments. Forest Products J. April pp.39-42
  8. Mochizuki, T., D. Ishiuchi, and K. Ito. 1999. Varietal differences in sugar contents and their stability to growing and environmental conditions in tomato. J. Japan. Soc. Hort. Sci. 68:1000-1006 https://doi.org/10.2503/jjshs.68.1000
  9. Park, K.W. and Y.S. Kim. 1998. Hydroponics in horticulture. 1st ed. pp. 76-90. Academy Books, Seoul
  10. Park, S.K., Y.H. Lee, Y.B. Lee, K.M. Yu, D.H. Lee, and S.Y. Choi. 2003. Effects of irrigation amount on growth and yield in cucumber fertigation. Kor. J. Hort. Sci. Technol. 21(SUPPL.):51
  11. Penningsfeld, F. 1971. Symposium on peat in horticulture. Technical Communications 18:1-25
  12. Rho, M.Y., Y.B. Lee, H.S. Kim, K.B. Lee, and J.H. Bae. 1997. Development of nutrient solution suitable for closed system in substrate culture of cucumber. J. Bio-Env. Con. 6:1-14
  13. Sonneveld, C. 1981. Items for application of macroelements in soilless cultures. Acta Hort, 126:187-195
  14. Sonneveld, C. and G.W.H. Welles. 1984. Growing vegetables in substrates in the Netherlands. pp.613-632. ISOSC proceedings
  15. Swiader, J.M. and A. Moore. 2002. SPAD-chlorophyll response to nitrogen fertilization and evaluation of nitrogen status in dryland and irrigated pumpkins. J. of Plant Nutrient 25:1089-1100 https://doi.org/10.1081/PLN-120003941
  16. Yamguchi, S. 1994. The basic characteristics of taste. pp. 97-118. In: Y. Yamano, and S. Yamaguchi (eds). the science of taste. Asagurashoden Press, Tokyo
  17. Yang, W.M., J.H. Hong, K.J. Park, and B.K. Shon. 1996. Environmental effects on the growth and development of tomato in compositing greenhouse. J. Bio-Envin. Cont. 5:202-209
  18. Yun, H.K., X.R. Li, I.S. Kim, and K.C. Yoo. 2000. Physical-chemical properties in the sand-based media. lnst. of Agr. Sci. Kangwon nat. Univ. J. Agri. Sci. 11:12-19