DOI QR코드

DOI QR Code

파라핀이 코팅된 Rb 증기 셀에서 비선형 광자기 효과 신호

Nonlinear Magneto-optic Effect in the Paraffin Coated Rb Vapor Cell

  • Lee, Hyun-Joon (Department of Physics, Pusan National University) ;
  • Yu, Ye-Jin (Department of Physics, Pusan National University) ;
  • Bae, In-Ho (Department of Physics, Pusan National University) ;
  • Moon, Han-Seb (Department of Physics, Pusan National University)
  • 발행 : 2009.08.25

초록

본 연구에서는 파라핀이 코팅된 Rb원자 증기 셀을 이용하여 $^{87}Rb$ $D_1$전이선의 Hanle스펙트럼과 비선형 광자기 효과 신호를 조사하였다. 파라핀 코팅 증기 셀의 효과에 의한 좁은 스펙트럼 폭을 가진 영역과 순수 증기 셀에서 얻을 수 있는 넓은 스펙트럼폭을 가진 이중구조의 Hanle 스펙트럼을 관측할 수 있었다. 스펙트럼에 나타난 이중구조에서 좁은 선폭 영역의 선폭은 1 kHz로 측정되었고, 스펙트럼 크기는 전체 스펙트럼에 대해서 10%로 측정되었다. 또한, Hanle 스펙트럼에 대응되는 이중 미분형태의 비선형 광자기 신호를 관측하였으며, 기울기가 급격하게 변하는 비선형 광자기 신호의 기울기는 레이저의 출력이 $200{\mu}W$일 때 대략 10 mV/${\mu}T$였다.

In our study, the Hanle spectrum and nonlinear magneto-optic effect (NMOE) signals were observed as a function of magnetic field on $D_1$ line of $^{87}Rb$ atoms contained in a paraffin coated vapor cell. We observed the double structure from the Hanle and the NMOE spectrum in the paraffin coated Rb vapor cell. The narrow spectral width of the narrow resonance signal is approximately 1 kHz and the magnitude is approximately 10 percent of the total spectrum. Also, the NMOE signals corresponding to the Hanle configuration consisted of two different dispersion-like features. At the near zero magnetic field, a sharp slope signal was centered, and its value was 10 mV/${\mu}T$ with laser power was $200{\mu}W$.

키워드

참고문헌

  1. H. A. Kim, K. Y. Kwon, and J. B. Kim, 'A study on electromagnetically induced transparency in Rb atoms,' Sae Mulli 37, 139-146 (1997)
  2. K. J. Boller, A. Imamolu, and S. E. Harris, 'Observation of electromagnetically induced transparency,' Phys. Rev. Lett. 66, 2593-2596 (1991) https://doi.org/10.1103/PhysRevLett.66.2593
  3. E. Alipieva, S. Gateva, E. Taskova, and S. Cartaleva, 'Narrow structure in the coherent population trapping resonance in rubidium,' Opt. Lett. 28, 1817-1819 (2003) https://doi.org/10.1364/OL.28.001817
  4. D. Budker, V. V. Yashchuk, and M. Zolotorev, 'Nonlinear magneto-optic effects with ultranarrow widths,' Phys. Rev. Lett. 81, 5788-5791 (1998) https://doi.org/10.1103/PhysRevLett.81.5788
  5. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalils, 'A subfemtotesla multichannel atomic magnetometer,' Nature 422, 596-599 (2003) https://doi.org/10.1038/nature01484
  6. I. Novikova, A. B. Matsko, V. A. Sautenkov, V. L. Velichnsky, G. R. Welch, and M. O. Scully, 'Ac-stark shifts in the nonlinear Faraday effect,' Opt. Lett. 25, 1651-1654 (2000) https://doi.org/10.1364/OL.25.001651
  7. L. Lee, J. B. Kim, and H. S. Moon, 'The characteristics of nonlinear magneto-optical effects based on coherent population trapping in the D1 line of Rb atoms,' Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 17, 1-6 (2006) https://doi.org/10.3807/KJOP.2006.17.1.001
  8. J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, 'All optical sensor for automated magnetometry based on coherent population trapping,' J. Opt. Soc. Am. B 24, 1482-1489 (2007) https://doi.org/10.1364/JOSAB.24.001482
  9. D. Budker1, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, 'Sensitive magnetometry based on nonlinear magneto-optical rotation,' Phys. Rev. A 62, 043403 (2000) https://doi.org/10.1103/PhysRevA.62.043403
  10. H. Failache, P. Valente, G. Ban, V. Lorent, and A. Lezama, 'Inhibition of electromagnetically induced absorption due to excited-state decoherence in Rb vapor,' Phys. Rev. A 67, 043810 (2003) https://doi.org/10.1103/PhysRevA.67.043810
  11. H. J. Lee, Y. J. Yu, I. H. Bae, and H. S. Moon 'Atomic coherence spectroscopy in the paraffin coated Rb atom vapor cell,' Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 19, 334-340 (2008) https://doi.org/10.3807/HKH.2008.19.4.334
  12. W. Demtroder, Laser Spectroscopy, 3rd ed. (Sringer, New York, USA, 2003), pp. 72-77
  13. D. Budker, L. Hollberg, D. F. Kimball, J. Kitching, S. Pustelny, and V. V. Yashchuk, 'Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells,' Phys. Rev. A 71, 012903 (2005) https://doi.org/10.1103/PhysRevA.71.012903
  14. M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, 'Relaxation of atomic polarization in paraffin-coated cesium vapor cells,' Phys. Rev. A 72, 023401 (2005) https://doi.org/10.1103/PhysRevA.72.023401
  15. E. Taskova, S. Gateva, E. Alipieva, K. Kowalski, M. Glodz, and J. Szonert, 'Nonlinear Faraday rotation for optical limitation,' Appl. Opt. 43, 4178-4181 (2004) https://doi.org/10.1364/AO.43.004178
  16. C. Andreeva, S. Cartaleva, Y. Dancheva, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and K. Nasyrov, 'Coherent spectroscopy of degenerate two-level systems in Cs,' Phys. Rev. A 66, 012502 (2002) https://doi.org/10.1103/PhysRevA.66.012502
  17. M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, 'Slow light in paraffin-coated Rb vapour cells,' J. Mod. Opt. 53, 2583-2591 (2006) https://doi.org/10.1080/09500340600952135
  18. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, and A. Weis, 'Resonant nonlinear magneto-optical effects in atoms,' Rev. Mod. Phys. 74, 1153-1201 (2002) https://doi.org/10.1103/RevModPhys.74.1153
  19. H. S. Moon, W. K. Lee, M. H. An, and J. B. Kim, 'Nonlinear magneto-optic effect based on atomic coherence in Rb D1-line,' Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 16, 7-12 (2005) https://doi.org/10.3807/KJOP.2005.16.1.007