DOI QR코드

DOI QR Code

DERIVATIONS OF PRIME AND SEMIPRIME RINGS

  • Argac, Nurcan (DEPARTMENT OF MATHEMATICS SCIENCE FACULTY EGE UNIVERSITY) ;
  • Inceboz, Hulya G. (DEPARTMENT OF MATHEMATICS SCIENCE AND ART FACULTY ADNAN MENDERES UNIVERSITY)
  • Published : 2009.09.01

Abstract

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+$yd(x))^n$ = xy + yx for all x, y $\in$ I, then R is commutative. (ii) If char R $\neq$ = 2 and (d(x)y + xd(y) + d(y)x + $yd(x))^n$ - (xy + yx) is central for all x, y $\in$ I, then R is commutative. We also examine the case where R is a semiprime ring.

Keywords

References

  1. M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1-2, 3.8 https://doi.org/10.1007/BF03323547
  2. K. I. Beidar, W. S. Martindale, and V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996
  3. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723.728 https://doi.org/10.1090/S0002-9939-1988-0947646-4
  4. C. L. Chuang, Hypercentral derivations, J. Algebra 166 (1994), no. 1, 39.71. https://doi.org/10.1006/jabr.1994.1140
  5. J. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49.63 https://doi.org/10.2140/pjm.1975.60.49
  6. C. Faith, Lecture on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, No. 49 Springer-Verlag, Berlin-New York, 1967
  7. Y. Hirano, A. Kaya, and H. Tominaga, On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), no. 2, 125.132
  8. N. Jacobson, PI-Algebras: An Introduction, Lecture Notes in Mathematics, Vol. 441. Springer-Verlag, Berlin-New York, 1975
  9. V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220.238, 242.243
  10. J. Lambek, Lecture on Rings and Modules, With an appendix by Ian G. Connell Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London 1966
  11. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731.734 https://doi.org/10.1090/S0002-9939-1993-1132851-9
  12. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27.38
  13. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576.584 https://doi.org/10.1016/0021-8693(69)90029-5

Cited by

  1. On commutativity of rings with generalized derivations vol.24, pp.2, 2016, https://doi.org/10.1016/j.joems.2014.12.011
  2. A Note on Skew-commuting Automorphisms in Prime Rings vol.55, pp.1, 2015, https://doi.org/10.5666/KMJ.2015.55.1.21
  3. Some identities on automorphisms in prime rings 2016, https://doi.org/10.1007/s12215-016-0260-z
  4. GENERALIZED DERIVATIONS ON SEMIPRIME RINGS vol.48, pp.6, 2011, https://doi.org/10.4134/BKMS.2011.48.6.1253
  5. DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS vol.50, pp.5, 2013, https://doi.org/10.4134/BKMS.2013.50.5.1651
  6. Some Results on Generalizedα,β-Derivations in∗-Prime Rings vol.2015, 2015, https://doi.org/10.1155/2015/583050
  7. Generalized Derivations of Rings and Banach Algebras vol.41, pp.3, 2013, https://doi.org/10.1080/00927872.2011.642043
  8. Semiprime rings with nilpotent Lie ring of inner derivations vol.13, pp.1, 2014, https://doi.org/10.2478/aupcsm-2014-0008
  9. Power Values of Derivations on Multilinear Polynomials in Prime Rings vol.41, pp.1, 2016, https://doi.org/10.1007/s40306-015-0151-y