DOI QR코드

DOI QR Code

Electrochemical Properties of Li[Ni0.2Li0.2Mn0.6]O2 by Microwave-assisted Sol-gel Method

  • Park, Yong-Joon (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Seuk-Buom (Department of Advanced Materials Engineering, Kyonggi University)
  • Published : 2009.06.25

Abstract

$Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode materials have been synthesized by a microwave-assisted sol-gel method. The structure and electrochemical properties of $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ were studied by X-ray difftactometry (XRD), scanning electron microscopy (SEM) and charge-discharge cycler. The powder prepared by microwave assisted sol-gel method showed good crystallinity and well-defined facet shapes. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ electrode delivered a high discharge capacity of 230 $mAhg^{-1}$ at the specific current of 40 $mAg^{-1}$ (0.2 C rate) in the voltage range of 2.0${\sim}$4.8 V. About 60 % of the discharge capacity measured at 0.2 Crate (140 $mAhg^{-1}$) was maintained at a 6 C (1200 $mAg^{-1}$)rate. The cyclic property was also stable and it did not deteriorated at a high Crate.

Keywords

References

  1. S.-J. Bao, Y.-Y. Liang, and H.-L. Li, Mater. Lett. 59, 3761 (2005) https://doi.org/10.1016/j.matlet.2005.07.012
  2. M. Nakayama, K. Watanabe, H. Ikuta, Y. Uchimoto, and M. Wakihara, Solid State Ionics 164, 35 (2003) https://doi.org/10.1016/j.ssi.2003.08.048
  3. H. Yan, X. Huang, H. Li, and L. Chen, Solid State Ionics 11, 113 (1998) https://doi.org/10.1016/S0167-2738(98)00360-9
  4. P. Kalyani, N. Kalaiselvi, and N. G. Renganathan, J. Power Sources 123, 53 (2003) https://doi.org/10.1016/S0378-7753(03)00458-0
  5. S.-J. Bao, Y.-Y. Liang, W.-J. Zhou, B.-L. He, and H.-L. Li, J. Power Sources 154, 239 (2006) https://doi.org/10.1016/j.jpowsour.2005.03.220
  6. Y.-P. Fu, C.-H. Lin, Y.-H. Su, and S.-H. Wu, J. Power Sources 159, 215 (2006) https://doi.org/10.1016/j.jpowsour.2006.04.034
  7. K. S. Park, J. T. son, H. T. Chung, S. J. Kim, C. H. Lee, and H. G. Kim, Electrochem. Commun. 5, 839 (2003). https://doi.org/10.1016/j.elecom.2003.08.005
  8. J. H. Ryu, S. B. Kim, and Y. J. Park, J. of KIEEME(in Korean) 21, 249 (2008)
  9. Y. J. Park, Y.-S. Hong, X. Wu, K. S. Ryu, and S. H. Chang, J. Power Sources 129, 288 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.024
  10. Y. J. Park, J. of KIEEME(in Korean) 20, 443 (2007)
  11. J. H. Ryu, B. G. Park, S. B. Kim, and Y. J. Park, J. Appl. Electrochem. 39, 1059 (2009) https://doi.org/10.1007/s10800-008-9757-2
  12. Y. Xia, M. Yoshio, and H. Noguchi, Electrochim. Acta, 52, 240 (2006) https://doi.org/10.1016/j.electacta.2006.05.002
  13. J.-S. Kim, C. S. Johnson, J. T. Vaughey, S. A. Hackney, K. A. Walz, W. A. Zeltner, M. A. Anderson, and M. M. Thackeray, J Electrochem. Soc. 151, A1755 (2004) https://doi.org/10.1149/1.1793713

Cited by

  1. Effect of Mo6+ doping on electrochemical performance of anatase TiO2 as a high performance anode material for secondary lithium-ion batteries vol.598, 2014, https://doi.org/10.1016/j.jallcom.2014.02.019