DOI QR코드

DOI QR Code

Electrical Properties of the Epoxy Nano-composites according to Additive

  • Shin, Jong-Yeol (Department of Car Mechatronics, Sahmyook University) ;
  • Park, Hee-Doo (Department of Electrical Engineering, Kwangwoon University) ;
  • Choi, Kwang-Jin (Department of Electrical Engineering, Kwangwoon University) ;
  • Lee, Kang-Won (Department of Electrical Engineering, Kwangwoon University) ;
  • Lee, Jong-Yong (Department of Electrical Engineering, Kwangwoon University) ;
  • Hong, Jin-Woong (Department of Electrical Engineering, Kwangwoon University)
  • Published : 2009.06.25

Abstract

The use of a filler material in epoxy composite materials is an essential condition for reducing the unit cost of production and reinforcing mechanical strength. However, the dielectric strength of insulators decreases rapidly due to interactions between the epoxy resin and filler particles. In contrast to existing composite materials, nano-composite materials have superior dielectric strength, mechanical strength, and enduring chemical properties due to an increase in the bond strength of the polymer and nano material, It is reported that nano-fillers provide new characteristics different from the properties of the polymer material. This study is to improve the insulation capability of epoxy resins used in the insulation of a power transformer apparatus and many electronic devices mold. To accomplish this, the additional amount of nano-$SiO_2$ to epoxy resin was changed and the epoxy/$SiO_2$ nano composite materials were made, and the fundamental electrical properties were investigated using a physical properties and an analysis breakdown test. Using allowable breakdown probability, the optimum breakdown strength for designing an electrical apparatus was determined. The results found that the electrical characteristics of the nano-$SiO_2$ content specimens were superior to the virgin specimens. The 0.4 wt% specimens showed the highest electrical properties among the specimens examined with an allowable breakdown probability of 20 %, which indicates stable breakdown strength in insulating machinery design.

Keywords

References

  1. C. Chakradhar Reddy and T. S. Ramu, IEEE Trans. Dielectr. Electr. Insul. 15, 221 (2008) https://doi.org/10.1109/T-DEI.2008.4446754
  2. J. Y. Shin, H. D. Park, H. J. Lee, K. W. Lee, W. J. Kim, and J. W. Hong, Trans. Electr. Electron. Mater. 9, 186 (2008) https://doi.org/10.4313/TEEM.2008.9.5.186
  3. T. Kumazawa, M. Oishi, and M. Todoki, IEEE Trans. Dielectr. Electr. Insul. 1, 133 (1994) https://doi.org/10.1109/94.300240
  4. R. Schifani, IEEE Trans. Dielectr. Electr. Insul. 2, 653 (1995) https://doi.org/10.1109/94.407029
  5. T. Candra, ICACM, Australia, A publication of the minerals, & metals society, 771 (1993)
  6. T. J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 1, 812 (1994) https://doi.org/10.1109/94.326653
  7. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 13, 319 (2006) https://doi.org/10.1109/TDEI.2006.1624276
  8. C. Zilg, D. Kaempfer, R. Mlhaupt, and G. C. Montanari, Annu. Rept. IEEE-CEIDP2003, 545 (2004)
  9. S.S. Ray and M. Okamoto, Pro. Polym. Sci. 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  10. T. Tanaka, G. C. Montanari, and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul. 11, 763 (2004) https://doi.org/10.1109/TDEI.2004.1349782
  11. A. Contin, M. Cacciari, and G. C. Montanari, CEIDP, 71 (1994)
  12. E.Y. Wu. J. Sune, and W. Lai, Electron Devices, IEEE Transactionson, 49, 2141 (2002) https://doi.org/10.1109/TED.2002.805603
  13. T. J. Lewis, IEEE-ICSD, 792 (2004)
  14. J. C. Fothergill, J. K. Nelson, and M. Fu, IEEE-CEIDP, 406 (2004)
  15. M. Kozako, S. Yamano, R. Kido, Y. Ohki, M. Kohtoh, and S. Okabe, Proc. ISEIM2005, 231 (2005)
  16. S. Singha and M. Joy Thomas, IEEE Trans. Dielectr. Electr. Insul.15, 12 (2008) https://doi.org/10.1109/T-DEI.2008.4446732
  17. M. Cacciari, G. Mazzanti, and G.C. Montanari, IEEE Trans. Dielectr. Electr. Insul. 1, 153(1994) https://doi.org/10.1109/94.300243

Cited by

  1. A Review on Nanocomposite Based Electrical Insulations vol.17, pp.5, 2016, https://doi.org/10.4313/TEEM.2016.17.5.239
  2. Functionalized Multiwalled Carbon Nanotubes-Reinforced Vinylester/Epoxy Blend Based Nanocomposites: Enhanced Mechanical, Thermal, and Electrical Properties vol.2015, 2015, https://doi.org/10.1155/2015/123153
  3. BisGMA/EPDM/amine functionalised MWCNTs based nanocomposites vol.44, pp.5, 2015, https://doi.org/10.1108/PRT-10-2014-0094
  4. Dynamic mechanical and thermal behavior evaluation of an epoxy/anhydride/nano-aluminum oxide composite system vol.25, pp.5, 2013, https://doi.org/10.1177/0954008312471961
  5. Effect of Fillers on Electromechanical Properties of Composites for Potential Sensing Applications vol.14, pp.8, 2014, https://doi.org/10.1109/JSEN.2014.2314775
  6. An investigation of TiO2 nanoparticles effect on morphology, thermal, and mechanical properties of epoxy/silica composites vol.23, 2017, https://doi.org/10.1002/vnl.21558
  7. Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites vol.14, pp.6, 2013, https://doi.org/10.4313/TEEM.2013.14.6.295
  8. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes vol.5, 2015, https://doi.org/10.1016/j.rinp.2015.07.002
  9. High-performance integrated passive technology by advanced SI-GaAs-based fabrication for RF and microwave applications vol.52, pp.3, 2010, https://doi.org/10.1002/mop.25018
  10. An Investigation of Thermal, Physical, and Electrical Properties and Morphological Behavior on Nanoepoxy Composite Insulation vol.11, pp.5, 2012, https://doi.org/10.1109/TNANO.2012.2209458
  11. Technical Relevance of Epoxy/Clay Nanocomposite with Organically Modified Montmorillonite: A Review vol.55, pp.13, 2016, https://doi.org/10.1080/03602559.2016.1163593
  12. Progress on Epoxy/Polyamide and Inorganic Nanofiller-Based Hybrids: Introduction, Application, and Future Potential vol.55, pp.17, 2016, https://doi.org/10.1080/03602559.2016.1185628
  13. Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage vol.28, pp.2, 2015, https://doi.org/10.4313/JKEM.2015.28.2.85