• Title/Summary/Keyword: Allowable breakdown probability

Search Result 5, Processing Time 0.022 seconds

Evaluation of Insulating Reliability in Epoxy Composites

  • Park, No-Bong;Yang, Dong-Bok;Lim, Jung-Kwan;Park, Yong-Pil;Lee, Hee-Kab;Kim, Gui-Yeul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1200-1203
    • /
    • 2003
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, according to Weibull distribution analysis, reducing breakdown probability of equipment insulation lower than 0.1% level requires the allowable field allowable field intensity values to be kept under 21.5 MV/cm.

  • PDF

Electrical Properties of the Epoxy Nano-composites according to Additive

  • Shin, Jong-Yeol;Park, Hee-Doo;Choi, Kwang-Jin;Lee, Kang-Won;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.97-101
    • /
    • 2009
  • The use of a filler material in epoxy composite materials is an essential condition for reducing the unit cost of production and reinforcing mechanical strength. However, the dielectric strength of insulators decreases rapidly due to interactions between the epoxy resin and filler particles. In contrast to existing composite materials, nano-composite materials have superior dielectric strength, mechanical strength, and enduring chemical properties due to an increase in the bond strength of the polymer and nano material, It is reported that nano-fillers provide new characteristics different from the properties of the polymer material. This study is to improve the insulation capability of epoxy resins used in the insulation of a power transformer apparatus and many electronic devices mold. To accomplish this, the additional amount of nano-$SiO_2$ to epoxy resin was changed and the epoxy/$SiO_2$ nano composite materials were made, and the fundamental electrical properties were investigated using a physical properties and an analysis breakdown test. Using allowable breakdown probability, the optimum breakdown strength for designing an electrical apparatus was determined. The results found that the electrical characteristics of the nano-$SiO_2$ content specimens were superior to the virgin specimens. The 0.4 wt% specimens showed the highest electrical properties among the specimens examined with an allowable breakdown probability of 20 %, which indicates stable breakdown strength in insulating machinery design.

Analysis of Insulating Reliability in Epoxy Composites using Weibull Distribution Equation (와이블 분포식을 이용한 에폭시 복합체의 절연 신뢰도 분석)

  • Park, No-Bong;Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.813-816
    • /
    • 2003
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, according to Weibull distribution analysis, reducing breakdown probability of equipment insulation lower than 0.1 % level requires the allowable field intensity values to be kept under 21.5 MV/cm.

  • PDF

Estimation of Breakdown Properties in Nano-composites using Weibull Statistics (와이블 통계를 이용한 나노컴퍼지트 파괴강도의 평가)

  • Lee, Kang-Won;Lee, Hyuk-Jin;Park, Hee-Doo;Kim, Jong-Hwan;Shin, Jong-Yeol;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.285-286
    • /
    • 2008
  • Recently, epoxy based nano-composites are being increasingly investigated for their electrical properties, since the introduction of nano fillers demonstrate several advantages in their properties when compared with the similar properties obtained for epoxy systems with micrometer sized fillers. We calculated scale and shape parameter using dielectric strength. In this paper, it is investigated that the allowable' breakdown probability of specimens is stable at some value using Weibull statistics. Therefore we found that breakdown probability of specimens is stable until 20 [%].

  • PDF

Electrical Insulation Properties of Nanocomposites with SiO2 and MgO Filler

  • Jeong, In-Bum;Kim, Joung-Sik;Lee, Jong-Yong;Hong, Jin-Woong;Shin, Jong-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.261-265
    • /
    • 2010
  • In this paper, we attempt to improve the electrical characteristics of epoxy resin at high temperature (above $80^{\circ}C$) by adding magnesium oxide (MgO), which has high thermal conductivity. Scanning electron microscopy (SEM) of the dispersion of specimens with added MgO reveals that they are evenly dispersed without concentration. The dielectric breakdown characteristics of $SiO_2$ and MgO nanocomposites are tested by measurements at different temperatures to investigate the filler's effect on the dielectric breakdown characteristics. The dielectric breakdown strength of specimens with added $SiO_2$ decreases slowly below $80^{\circ}C$ (low temperature) but decreases rapidly above $80^{\circ}C$ (high temperature). However, the gradient of the dielectric breakdown strength of specimens with added MgO is slow at both low and high temperatures. The dielectric breakdown strength of specimens with 0.4 wt% $SiO_2$ is the best among the specimens with added $SiO_2$, and that of specimens with 3.0 wt% and 5.0 wt% MgO is the best among those with added MgO. Moreover, the dielectric strength of specimens with 3.0 wt% MgO at high temperatures is approximately 53.3% higher than that of specimens with added $SiO_2$ at $100^{\circ}C$, and that of specimens with 5.0 wt% of MgO is approximately 59.34% higher under the same conditions. The dielectric strength of MgO is believed to be superior to that of $SiO_2$ owing to enhanced thermal radiation because the thermal conductivity rate of MgO (approximately 42 $W/m{\cdot}K$) is approximately 32 times higher than that of $SiO_2$ (approximately 1.3 $W/m{\cdot}K$). We also confirmed that the allowable breakdown strength of specimens with added MgO at $100^{\circ}C$ is within the error range when the breakdown probability of all specimens is 40%. A breakdown probability of up to 40% represents a stable dielectric strength in machinery and apparatus design.