DOI QR코드

DOI QR Code

Analysis of Chemical Composition and in vitro Anti-oxidant Properties of Extracts from Sea Buckthorn (Hippophae rhamnoides)

비타민나무(Sea Buckthorn, Hippophae rhamnoides) 추출물의 이화학적 성분 분석과 항산화 활성효과

  • Kim, Kyung-Min (School of Biotechnology, Kangwon National university) ;
  • Park, Min-Hee (School of Biotechnology, Kangwon National university) ;
  • Kim, Kyung-Hee (Agriproduct Processing Experiment Station, Gangwon-do Agricultural Research & Experiment Services) ;
  • Im, Sang-Hyun (Agriproduct Processing Experiment Station, Gangwon-do Agricultural Research & Experiment Services) ;
  • Park, Yoo-Hwa (Agriculture and Life Science, Kangwon National University) ;
  • Kim, Young-Nam (Agriproduct Processing Experiment Station, Gangwon-do Agricultural Research & Experiment Services)
  • 김경민 (강원대학교 BT특성화학부) ;
  • 박민희 (강원대학교 BT특성화학부) ;
  • 김경희 (강원도농업기술원 농산물이용시험장) ;
  • 임상현 (강원도농업기술원 농산물이용시험장) ;
  • 박유화 (강원대학교 농업생명과학대학 자원생물환경학과) ;
  • 김영남 (강원도농업기술원 농산물이용시험장)
  • Published : 2009.06.30

Abstract

Total polyphenol contents and antioxidative activity of water and ethanol extracts from Sea Buckthorn (Hippophae rhamnoides) leaves, branches (bough and twig) and roots were analyzed. The level of crude ash and crude protein in water extract of leaves, branches (bough and twig), and roots were shown to be a bit higher than ethanol extracts. Especially crude protein contents from water extract of leaves, bough, twig, and roots were 14.90, 18.60, 18.03, and 16.61% respectively. Total polyphenol content of ethanol extracts of all parts of Sea buckthorn was ranged from 106.33${\pm}$2.32 ${\mu}g/g$ to 147.78${\pm}$3.06 ${\mu}g/g$ showing higher amount than water extracts. To investigate antioxidative activity of Sea buckthorn, DPPH free radical scavenging activity, hydroxy radical scavenging activity, and SOD-like activity were analyzed. The results showed that the antioxidative activity of ethanol extracts was relatively higher than water extracts. The $IC_{50}$ values for DPPH free radical scavenging activity was ranged from 23.58${\pm}$0.84 ${\mu}g/mL$ to 59.35${\pm}$1.69 ${\mu}g/mL$. Compared to 68.85${\pm}$1.44% of SOD-like activity from L-ascorbic acid used as a control, the ethanol extract of Sea buckthorn branches showed relatively strong activity of 35.03${\pm}$2.33%. The highest hydroxy radical scavenging activity was shown as 66.12${\pm}$8.73% from ethanol extract of Sea buckthorn roots which was similar value to 72.47${\pm}$2.83% of L-ascorbic acid.

본 연구에서는 비타민나무의 기능성 소재 개발을 위한 기초 자료로 활용하기 위해 일반 성분, 이화학적특성 중 총 페놀함량과 DPPH free radical 소거활성, SOD 유사활성, Hydroxy radical scavenging activity를 이용한 항산화활성을 측정하였다. 비타민나무는 잎, 잔가지, 굵은 가지, 뿌리의 4가지 부위를 물과 에탄올을 용매로 추출하여 실험에 사용한 결과, 일반 성분의 경우 비타민 나무의 모든 부위에서 조회분과 조단백질의 함량이 에탄올 추출물보다 물 추출물에서 더 높은 것으로 확인되었다. 총 폴리페놀함량은 잎과 뿌리 부위해서 높은 결과를 보였으며, 물 추출물에 비해서 에탄올 추출물의 함량이 더 높은 것으로 확인되었다. DPPH radical 제거활성은 잔가지를 제외한 부위에서 에탄올 추출물보다 물 추출물이 높은 활성을 보였고, 특이적으로 에탄올을 용매로 한 잔가지 추출물의 $IC_{50}$이 23.58${\pm}$0.84%로 가장 높은 활성을 나타내었다. SOD 유사활성능은 물 추출물보다 에탄올 추출물이 높았으며, 그 중 잔가지의 에탄올 추출물이 35.03${\pm}$2.33%의 가장 높은 활성을 나타내었다. Hydroxy radical scavenging 활성은 에탄올 추출물이 물 추출물에 비해 2배 이상의 높은 활성을 보였고, 그 중 뿌리 부위의 에탄올 추출물이 66.12${\pm}$8.73%의 높은 활성을 보였다. 결과적으로 본 연구에서는 비타민나무 추출물의 영양학적 가치와 항산화활성을 확인하였고, 그로 인한 기능성소재로써의 개발이 가능할 수 있음을 확인하였다.

Keywords

References

  1. AOAC (1980) Official Methods of Analysis of the A.O.A.C, Association of Official Analytical Chemists, Washington D.C. USA
  2. Bailey LH and Bailey EZ (1978) Hortus third. A concise dictionary of plants cultivated in the United States and Canada. McMillan Publ. Co., New York
  3. Bernath J and Foldesi D (1992) Sea buckthorn (Hippophae rhamnoides L.): a promising new medicinal and food crop, J Herbs Spices Med Plants 1, 27-35 https://doi.org/10.1300/J044v01n01_04
  4. Chung IM, Kim KH, and Ahn JK (1998) Screening of Korean medicinal and food plants with antioxidant activity. Korean J Medicinal Crop Sci 6, 311-322
  5. Gao X, Ohlander M, Jeppsson N, Bjork L, and Trajkovski V (2000) Changes in antioxidant effects and their relationship to phytonutrients III fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem 48, 1485-1490 https://doi.org/10.1021/jf991072g
  6. Gurevick SK (1956) The application of sea buckthorn oil on ophthalmology. Vesttn Ottamologu 2, 30-33
  7. Gutteridge JM (1984) Reactivity of hydroxyl and hydroxyl like radicals discriminated by release of thiobarbituric acid reactive material from deoxy sugars, nucleosides, and benzoate. Biochem J 224, 761-767
  8. Heinze M and Fiedler HJ (1981) Experimental planting of potash waste dumps. 1. Communication: Pot experiments with trees and shrubs under various water and nutrient conditions. Archiv Acker Pflanzen Bodenkunde 25, 315-322
  9. Hong HD, Kang NK, and Kim SS (1998) Superoxide dismutans-like activity of apple juice mixed with some fruits and vegetable. Korean J Food Sci Technol 30, 1484-1487
  10. Hyun SH, Lee JS, Lee KB and Lee JS (2007) Antioxidative activity of Gynostemma pentaphyllum Makino extracts. Korean J Food Sci Technol 39, 447-451
  11. Kallio H, Yang B, Peippo P, Tahvonen R, and Pan R (2002) Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of sea buckthorn (Hippophae rhammoides). J Agric Food Chem 50, 3004-3009 https://doi.org/10.1021/jf011556o
  12. Kwon GJ, Choi DS and Wang MH (2007) Biological activities of hot water extracts from Euonymus alatus leaf. Korean J Food Sci Technol 39, 569-574
  13. Lee YS, Joo EY, and Kim NW (2005) Antioxidant activity of extracts from the Lespedeza bicolor. Korean J Food Preserv 12, 75-79
  14. Letchamo W, Klevakin R, and Lobatcheva II (2002) Heavy metal accumulation in sea buckthorn cultivars in Siberia. In: J. Janick and A. Whipkey (eds.), pp. 399-401, Trends in new crops and new uses. ASHS Press, Alexandria, VA
  15. Li TSC (2002) Product development of sea buckthorn. In: J. Janick and A. Whipkey (eds.), pp. 393-398, Trends in new crops and new uses. ASHS Press, Alexandria, VA
  16. Li TSC and Wang LCH (1998) Physiological components and health effects of ginseng, echinacea and sea buckthorn. In: G. Mazza (ed.), Functional foods, biochemical & processing aspects. Technomic Publ Co. Inc., Lancaster, PA
  17. Li TSC and Schroeder WR (1996) Sea buckthorn (Hippophae rhamnoides L.): A multipurpose plant. Horttechnology 6, 370-386
  18. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim N, and Chung IM (2004) Comparison of SOD activity and phenolic compound contents in various Korean medicinal plant. Korean J Med Crop Sci 12, 191-202
  19. Marklund Sand Marklund G (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47, 468-474
  20. Merja H, Jyrki P, and Riitta JT (2006) Effects of different organic farming methods on the concentration of phenolic compounds in sea buckthorn leaves. J Agric Food Chem 56, 7678-7685 https://doi.org/10.1021/jf061018h
  21. Ricahrd TB, and Paul ES (2008) Hippophae rhamnoides L. common seabuckthorn. In: The woody plant seed manual. pp. 588-589, USDA
  22. Rosch D, Bergmann M, Knorr D, and Kroh LW (2003) Structureantioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J Agric Food Chem 51, 4233-4239 https://doi.org/10.1021/jf0300339
  23. Rousi A (1971) The genus Hippophae L. A taxonomic study. Ann Bot Fenn 8, 177-227
  24. Singleton VL and Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am J Enol Vitic 16, 144-158
  25. Tiffany TYG Stefan C, and Arnie H (2005) Effect of drying on the nutraceutical quality of sea buckthorn (Hippophae rhamnoides L. ssp. sinensis) leaves. J Food Science 70, 514-518 https://doi.org/10.1111/j.1365-2621.2005.tb08312.x
  26. Yang B and Kallio H (2002) Composition and physiological effects of sea buckthorn (Hippophae) lipids. Trends Food Sci Tech 13, 160-167 https://doi.org/10.1016/S0924-2244(02)00136-X
  27. Yang B, Karlsson RM, Oksman PH, and Kallio HP (2001) Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: Identification and effects of different origins and harvesting times. J Agric Food Chem 49, 5620-5629 https://doi.org/10.1021/jf010813m
  28. Yu JS, Hwang Iq Woo KS, Chang YD, Lee CH, Jeong JH and Jeong HS (2008) Physicochemical characteristics of Chrysanthemum indicum L. flower tea according to different pan-firing times. Korean J Food Sci Technol 40, 297-302

Cited by

  1. Antioxidant effects of solvent extracts from the dried jujube (Zizyphus jujube) sarcocarp, seed, and leaf via sonication vol.20, pp.1, 2011, https://doi.org/10.1007/s10068-011-0023-8
  2. Hot water leaves extracts of Zizyphus jujube exert antioxidative effects in vitro and cytotoxicity in human cancer cell lines vol.52, pp.6, 2011, https://doi.org/10.1007/s13580-011-0040-9
  3. Synthesis and Properties of an Ecofriendly Superabsorbent Composite by Grafting the Poly(acrylic acid) onto the Surface of Dopamine-Coated Sea Buckthorn Branches vol.54, pp.13, 2015, https://doi.org/10.1021/acs.iecr.5b00092
  4. Anti-Diabetic, Alcohol-Metabolizing, and Hepatoprotective Activities of Moringa (Moringa oleifera Lam.) Leaf Extracts vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.819
  5. Antioxidant and Inhibitory Effects of Korean Panax ginseng Extract on Pro-inflammatory Mediators in LPS-stimulated RAW264.7 Macrophages vol.41, pp.10, 2012, https://doi.org/10.3746/jkfn.2012.41.10.1371
  6. Effect of Sea Buckthorn Leaves on Hepatic Enzyme Levels in Streptozotocin Induced Diabetic Rats vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.040
  7. Protective Effects of Sea Buckthorn (Hippophae rhamnoides L.) Leaves Fermented with Hericium erinaceum Mycelium against Oxidative Modification of Biological Macromolecules and Cell Death vol.44, pp.1, 2015, https://doi.org/10.3746/jkfn.2015.44.1.035
  8. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-0352-y
  9. 비타민나무(Seabuckthorn, Hippophae rhamnoides L.) 부위별 추출물의 생리활성 비교 vol.39, pp.7, 2010, https://doi.org/10.3746/jkfn.2010.39.7.975
  10. 비타민나무 잎으로부터 항산화활성 관련 Flavonol Glycoside 분리 vol.19, pp.4, 2009, https://doi.org/10.7783/kjmcs.2011.19.4.251
  11. 비타민 나무 Seed 추출물의 항산화 활성 및 항염증에 관한 연구 vol.28, pp.5, 2013, https://doi.org/10.7841/ksbbj.2013.28.5.327
  12. 비타민나무 잎 첨가 현미설기떡 제조 및 항산화 활성 vol.53, pp.1, 2009, https://doi.org/10.6115/fer.2015.002
  13. LPS로 유도된 RAW 264.7 세포에 대한 레몬 머틀 잎 추출물의 항염증 효과 vol.27, pp.9, 2017, https://doi.org/10.5352/jls.2017.27.9.986
  14. LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과 vol.28, pp.5, 2009, https://doi.org/10.5352/jls.2018.28.5.569
  15. 다시마 물 추출액과 발효액의 항산화 및 항염증 활성 vol.29, pp.5, 2009, https://doi.org/10.5352/jls.2019.29.5.596
  16. Quality and antioxidant properties of morning bread added with sourdough according to the mixing ratios of sea buckthorn leaf vol.28, pp.5, 2009, https://doi.org/10.11002/kjfp.2021.28.5.621