DOI QR코드

DOI QR Code

Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed

충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석

  • Kim, Nam-Won (Water Resources Research Division, Water Resources & Environment Research Department, KlCT) ;
  • Shin, Ah-Hyun (Water Resources Research Division, Water Resources & Environment Research Department, KlCT) ;
  • Kim, Chul-Gyum (Water Resources Research Division, Water Resources & Environment Research Department, KlCT)
  • 김남원 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 신아현 (한국건설기술연구원 수자원.환경연구본부 수자원연구실) ;
  • 김철겸 (한국건설기술연구원 수자원.환경연구본부 수자원연구실)
  • Published : 2009.06.30

Abstract

SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

Keywords

References

  1. 한국건설기술연구원, 2007, 지표수 수문성분 해석 시스템 개발 , 2단계 연구보고서, 384
  2. 윤춘경, 신아현, 정광욱, 장재호, 2007, BASINS/WinHSPF를 이용한 남한강 상류유역의 비점오염원 저감효율평가, 수질보전 한국물환경학회지, 23(6), 951-960
  3. 임상준, Brannan K. M., Mostaghimi S., 조재필, 2003, HSPF와 SWAT 모형을 이용한 산림유역의 유출 및 유사량 추정, 한국농촌계획학회논문집, 9(4), 59-64
  4. 손경호, 이혜숙, 김정곤, 2006, SWAT과 HSPE 모델을 이용한 용담댐 유역 유출량과 유사량 분석, 공동추계학술발표회 논문집, 대한상하수도학회.한국물환경학회, 738-746
  5. Singh J., Knapp H. V., Arnold J. G., Demissie M., 2004, Hydrological Modeling of the Iroquois River Watershed Using HSPF and SWAT, Journal of the American Water Resources Association, 41(2), 343-360 https://doi.org/10.1111/j.1752-1688.2005.tb03740.x
  6. Nasr A., Bruen M., Jordan P., Moles R, Kiely G., Byrne P., 2007, A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland, Water research, 41(5), 1065-1073 https://doi.org/10.1016/j.watres.2006.11.026
  7. Saleh A., Du B., 2004, Evaluation of SWAT and HSPF within BASINS Program for the Upper North Bosque River Watershed in Central Texas, Journal of American Society of Agricultural Engineers, 47(4), 1039-1050 https://doi.org/10.13031/2013.16577
  8. Kim N. W., Chung 1. M., Won Y. S., Arnold, J. G., 2008, Development and application of the integrated SWAT-MODFLOW model, Journal of hydrology, 356( 1/2), 1-16 https://doi.org/10.1016/j.jhydrol.2008.02.024
  9. Kim N. W., Lee J., 2008, Temporally weighted average curve number method for daily runoff simulation, Hydrological Processes, 22, 4936-4948 https://doi.org/10.1002/hyp.7116
  10. Allen R. G., 1986, A Penman for all seasons, J. Irr. Drainage Eng. (ASCE), 112(4), 348-368 https://doi.org/10.1061/(ASCE)0733-9437(1986)112:4(348)
  11. Allen R G., Jensen M. E., Wright J. L., Burman R. D., 1989, Operational estimates of evapotranspiration, Agron. J., 81, 650-662 https://doi.org/10.2134/agronj1989.00021962008100040019x
  12. Monteith J. L., 1965, Evaporation and environment. In The State and Movement of Water in Living Organisms, Proceedings of 15th Symposium Society for Experimental Biology, Swansea. Cambridge University Press, London, 205-234
  13. Priestley C. H. B., Taylor R. J., 1972, On the assessment of surface heat flux and evaporation using large-scale parameters, Month. Weather Revision, 100, 81-92 https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  14. Hargreaves G. L., Hargreaves G. H., Riely J. P., 1985, Agriculture benefits for Senegal River Basin, J. Irr. Drainage Eng. (ASCE), 111(2), 113-124 https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113)
  15. Jensen M. E., Haise H. R., 1963, Estimating evapotranspiration from solar radiation: Proceedings of the American Society of Civil Engineers, Journal of Irrigation and Drainage, 89(4) 15-41
  16. Hamon R. W., 1961, Estimating Potential Evapotranspiration, Proceedings of the American Society of Civil Engineers, Journal of the Hydraulic Division, 87(HY3), 107-120
  17. 유승환, 최진용, 장민원, 2006, 논벼에 대한 Penman-Monteith와 FAO Modified Penman 공식의 작물 계수 산정, 한국농공학회논문집, 48(1), 13-23 https://doi.org/10.5389/KSAE.2006.48.1.013
  18. Di Luzio M., Srinivasan R, Arnold J., 2001, Arcview Interface for SWAT2000 User's Guide, TWRl Report TR-193, Texas Water Resources Institute, College Station, TX
  19. Neitsch S. L., Arnold J. G., Kiniry J. R., Williams J. R., 2001, Soil and Water Assessment Tool; the theoretical documentation (version 2000, U. S. Agricultural Research Service)
  20. Bicknell B. R., Imhoff 1. C., Kittle Jr., J. L., Jobes T. H., Donigian Jr., A. S., 2001, Hydrological Simulation Program - FORTRAN (HSPF): User's manual for Version 12, U.S.EPA, Environmental Research Laboratory, Athens, GA
  21. Hooghoudt S. B., 1940, Bijdage tot de kennis van enige natuurkundige grootheden van de grond, Versl. Landbouwkd. Onderz., 46, 515-707
  22. 김철겸, 이정은, 김남원, 2007, 충주댐 상류유역의 유사 발생에 대한 시공간적인 특성, 한국수자원학회논문집, 40(11), 887-898 https://doi.org/10.3741/JKWRA.2007.40.11.887
  23. 김남원, 이병주, 이정은, 2007, 공간모의유량을 이용한 갈수량 거동 특성에 관한 연구, 대한토목학회논문집, 27(4B), 431-440
  24. 김철겸, 김남원, 2008, 충주댐 유역의 오염원에 따른 오염부하량 발생 특성, 수질보전 한국물환경학회지, 24(4), 465-472
  25. Nash J. E., Sutcliffe J. V., 1970, River flow forecasting through conceptual model, Journal of Hydrology, 10(3), 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  26. 김남원, 이정우, 이병주, 이정은, 2007, 비선형 저류 방정식을 이용한 일 단위 하도추적법, 대한토목학회논문집, 27(5B), 533-542
  27. Jensen M. E., Rob D. C. N., Franzoy C. E., 1969, Scheduling irrigations using climate-crop-soil data, National Conference on Water Resources Engineering of the American Society of Civil Engineers, New Orleans, LA
  28. Leavesley G. H., Lichty R. W., Troutman B. M., Saindon L. G., 1983, Precipitation Runoff Modeling System: User's Manual, Water Resources Investigations 83-4238, U.S. Geological Survey, Denver, CO
  29. Nathan R J., McMahon T. A., 1990, Evaluation of automated techniques for baseflow and recession analyses, Water Resources Research, 26(7), 1465-1473
  30. 건설교통부, 2007, 우리나라 지역특성에 맞는 최적지하수 함양량 산정 기법 개발,66

Cited by

  1. Evaluation of Applicability and Hydrologic Parameter Calibration for HSPF Model using Expert System for HSPF vol.55, pp.4, 2013, https://doi.org/10.5389/KSAE.2013.55.4.013
  2. Evaluation of the Tank Model Optimized Parameter for Watershed Modeling vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.009