Abstract
A reliable detection of regions in radiography is one of the most important task before the evaluation of defects on welded joints. The extracted features is to be classified into distinctive clusters for each segmented region. But conventional segmentation techniques give unsatisfactory results for this task due to the spatial superposition of intensity and low signal-to-ratio(SNR) in radiographic images. The usage of global or local processes not only provide the necessary noise resistance but also fail in classification of regions. In this paper, we presents an appropriate approach for segmentation of region-based indications in industrial Computed Radiography(CR) images. The geometric differences between welded and non-welded area which is generated on radiography as the representative regions(background, thickness, middle and welded region in steel tube image) have constructed the hierarchical structure. Although this structure is contaminated by noise, the scheme between regions can be selected by the help of local clustering based on distinctive geometric property of each region. Because of the geometric nature of the considered region and so that the region is selected layer by layer, and that the real class represents the boundary between regions, the vertical and horizontal clustering process in each layer must be judicious. In order to show the effectiveness of this approach, a comparative experiment of various segmentation method is performed on industrial steel tube CR images.
방사선영상의 신뢰할 만한 영역검출은 용접부위 결함탐지 이전의 중요한 작업 중의 하나이다. 추출되는 특징들은 각 분할된 영상에 대하여 서로 다른 군집으로 분류되어야한다. 그러나 종래의 분할 기법으로는 방사선영상 고유의 색도중첩과 낮은 SN비로 인해 만족할 만한 결과를 얻기가 쉽지 않다. 전체나 국부처리로는 잡음제거에 취약할 뿐만 아니라 영역분류도 어렵다. 이 논문은 산업용 CR 영상에서 영역기반실현의 분할을 위한 적절한 기법을 제시한다. 강판튜브에서 용접과 비용접 구간의 기하학적 차이가 영상화 과정을 통해 배경부, 두께부, 중간부 및 용접부 영역을 생성하고 계층 구조적 배열을 형성한다. 비록 그 구조가 잡음에 훼손되기는 하지만 영역구분 구도 각 영역의 차별된 기하학적 특성에 근거한 국부군집화에 의해 선별이 가능하다. 관련 영역의 기하학적 속성에 의해 그에 따른 영역이 계층별로 선별되어 실제 구분이 영역간 경계를 반영하기 때문에 직경과 길이방향의 군집화는 각 계층의 구별을 명확케 한다. 그리고 산업용 강판튜브 CR영상에 다양한 분할 방식으로 비교 실험을 실시하여 이 기법의 효과를 보였다.