나노입자가 알테미아(Artemia sp.) Cyst 부화율에 미치는 영향

Effect of Nano Particles on the Hathcing rate of Artemia sp. Cyst Zooplankton

  • 정연규 (경상대학교 해양환경공학과) ;
  • 이병우 (산업의과대학) ;
  • 박찬일 (경상대학교 해양산업연구소) ;
  • 최광수 (경상대학교 해양산업연구소) ;
  • 김무찬 (경상대학교 해양산업연구소)
  • Jeong, Yeon-Kyu (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Lee, Byeong-Woo (Department of Environmental Health Engineering University of Occupational and Environmental Health) ;
  • Park, Chan-Il (Institute of Marine Industry, The collage of Marine Science, Gyeongsang National University) ;
  • Choi, Kwang-Soo (Institute of Marine Industry, The collage of Marine Science, Gyeongsang National University) ;
  • Kim, Mu-Chan (Institute of Marine Industry, The collage of Marine Science, Gyeongsang National University)
  • 투고 : 2009.10.21
  • 심사 : 2009.11.24
  • 발행 : 2009.11.25

초록

이 연구에 사용된 9종류의 나노입자는 직경 100 nm 이하의 크기를 가진 입자로, 알테미아 cyst가 nauplius로 부화되는 과정에서 어떠한 영향을 미치는지 살펴보았다. 24시간 경과 후 나노입자를 첨가하지 않은 대조구에서는 82%가 nauplius로 부화하였다. 20 mg/L 농도에서는 AGZ020, Nano silver, P-25, Sb, 및 SnO 나노입자가 각각 18%, 20%, 13%, 50% 및 0%의 부화율을 보여 유해성이 큰 것으로 나타났으나, Ag-$TiO_2$, In, Sn, 및 Zn 나노입자에서는 각각 75%, 60%, 73% 및 73%로 대조구에 비해 유해성을 가졌지만, AGZ020, Nano silver, P-25, Sb, 및 SnO 나노입자에 비해 상대적으로 미약한 것으로 나타났다. 이는 나노입자가 가지고 있는 성분에 따라서 차이가 났다. AGZ020, Nano silver 및 P-25 나노입자는 은(Ag)이 2% 함유되어 항균제로서 널리 사용되어지고 있으며, 산소를 결합시킨 SnO 나노입자는 광촉매제로 사용되고 있다. 이들 나노입자들은 현재 가전, 기능성 화장품, 항균제 및 광촉매제 등 사용이 일반화되어 수중환경으로 유입될 가능성이 높아지고 있다. 이에 따라 수중생태계에 점차 영향을 줄 가능성이 높기에, 나노입자가 가지는 잠재적 위험성을 지속적으로 연구해야 할 것이다.

9 kinds of nanoparticle used for this study was a particle with the size of less than 100 nm of diameter, and Artemia sp. cyst examined what kind of influence to have upon the process hatched out in nauplius. 82% hatched in nauplius at the opposition ward where a nanoparticle wasn't added after 24 time course. AGZ020, Nano silver, P-25, Sb and SnO nanoparticle showed hatching rate of 18%, 20%, 13%, 50% and 0% respectively by the 20mg/L density, and it became clear that a harmful effect is big, but I had a harmful effect compared with the opposition ward by 75%, 60%, 73% and 73% respectively by Ag-$TiO_2$, In, Sn and Zn nanoparticle, but a feeble thing was known relatively compared with AGZ020, Nano silver, P-25, Sb and SnO nanoparticle. The difference has caused this with the ingredient a nanoparticle has. Ag is included 2 % and AGZ020, Nano silver and P-25 nanoparticle are used widely as anti-fungus agent, and the SnO nanoparticle which became combination is a light catalyst pill, and oxygen is used for a Sn particle. This and others, a possibility that use is generalized and flows into aquatic environment in sequence the home electronics, functionality cosmetics, anti-fungus agent and a light catalyst pill at present becomes high for nanoparticles and others. The anxiety which has an influence on the ecology world in the water with this can be generated, so I'd have to study the potential danger a nanoparticle has continuously.

키워드

참고문헌

  1. 김영훈, 이종협, 2005, 나노기술의 유해성, 한국화학공학회, News & Information for Chemical Engineers, 제23권, 제3호, pp. 338-342.
  2. 김장회, 2004, 나노 실버 항균 소재 및 응용, 한국화학공학회, News & Information for Chemical Engineers, 제22권, 제6호, pp. 656-660.
  3. 서필원, 최상현, 문상진, 이상진, 장방진, 홍성창, 2006, Degussa TiO2를 이용한 시료 액상 반응활성의 비교평가를 위한 표준조건, 한국환경분석학회지, 제9권, 제2호, pp. 105-113.
  4. 최봉기, 김경호, 소대섭, 유일재, 2007, 나노기술의 환경, 보건, 안정성 영향에 관한 연구동향, 한국공업화학지, 제10권, 제1호, pp. 48-71.
  5. Aleesio, H.M., 1993, Exercise induced oxidative strees Medicine Science & Sport and Exercise, Vol. 25, No. 2, pp. 218-224.
  6. Barbara, M. Rothen-Rutishauser, Samuel Schrch, Beat Haenni, Nadine Kapp, and Peter Gehr 2006, Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques, Environmental Science and Technology, Vol. 40, No.14, pp. 4353-4359.
  7. Franklin, T.J. and Snow, G.A., 1989, Biochemistry of antimicrobial action, Chapman and Hall, Lodon, 4th ed, pp. 55-72.
  8. Yamagishi, H., Saito, K., Furusaki, S., Sugo, T. and Ishigaki, I., 1991, Introduction of a high-density chelating group into a porous membrane without lowering the flux, Industrial & Engineering Chemistry reasearch, Vol. 30, pp. 2234-2237. https://doi.org/10.1021/ie00057a028
  9. Robert, B.T. and Charles, P.G., 1989, The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses, CRC Critical Reviews Environmental Control, Vol. 18, No. 4, pp. 295-315. https://doi.org/10.1080/10643388909388351
  10. Russell, A.D. and Hugo, W.B., 1994, Antimicrobial activity and action of silver, Progress in Medicinal Chemistry, Vol. 31, pp. 351-370. https://doi.org/10.1016/S0079-6468(08)70024-9
  11. Thomas, C. Long, Navid Saleh, Robert D. Tilton, Gregory V. Lowry, and Bellina Veronesi, 2006, Titanium Dioxide (P25) Produces Reative Oxygen species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Evironmental Science & Technology, Vol. 40, No. 14, pp. 4346-4352. https://doi.org/10.1021/es060589n