DOI QR코드

DOI QR Code

Sharp-unknotting Number of a Torus Knot

  • Kanenobu, Taizo (Department of Mathematics Osaka City University Sugimoto)
  • Received : 2008.09.22
  • Accepted : 2008.09.30
  • Published : 2009.09.30

Abstract

We give an estimation for the sharp-unknotting number of certain types of torus knots, and decide it for 39 torus knots.

Keywords

References

  1. C. McA. Gordon, R. A. Litherland and K. Murasugi, Signatures of covering links, Canad. J. Math., 33(1981), 381-415. https://doi.org/10.4153/CJM-1981-032-3
  2. P. Kromheimer and T. Mrowka, Gauge theory for embedded surfaces I, Topology, 32(1993), 773-826 https://doi.org/10.1016/0040-9383(93)90051-V
  3. P. Kromheimer and T. Mrowka, Gauge theory for embedded surfaces II, Topology, 34(1995), 37-97. https://doi.org/10.1016/0040-9383(94)E0003-3
  4. H. Murakami, Some metrics on classical knots, Math. Ann., 270(1985), 35-45. https://doi.org/10.1007/BF01455526
  5. H. Murakami and S. Sakai, Sharp-unknotting number and the Alexander module, Topology Appl., 52(1993), 169-179. https://doi.org/10.1016/0166-8641(93)90035-C
  6. K. Murasugi, On closed 3-braids, Mem. Amer. Math. Soc., no. 151, 1974.
  7. K. Murasugi, Knot Theory and Its Applications, Birkhauser, 1996.
  8. K. Nakamura, Y. Nakanishi, and Y. Uchida, Delta-unknotting number for knots, J. Knot Theory Ramifications, 7(1998), 639-650. https://doi.org/10.1142/S0218216598000334
  9. Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, 7(1994), 289-305.