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Sharp-unknotting Number of a Torus Knot
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Abstract. We give an estimation for the sharp-unknotting number of certain types of

torus knots, and decide it for 39 torus knots.

1. Introduction

Hitoshi Murakami [3] defined a sharp-move, which is a change in a oriented link
projection as shown in Fig. 1. He has proved that a sharp-move is an unknotting
operation, that is, for any oriented knot K there exists a finite sequence of sharp-
moves which deform K into a trivial knot. He then considered the minimum number
of sharp-moves needed to transform a knot K into another knot K ′; he defined
such a number the sharp-Gordian distance from K to K ′. In particular, the sharp-
unknottiing number of K is the sharp-Gordian distance from K to a trivial knot,
denoted by u#(K ).

t+           t–    e+     e–     f+   f0   f–

L+                                        L–                       L0

LL −ï 0L

Figure 1: A sharp-move.

In this note, we estimate the sharp-unknotting number of a torus knot of type
(r, s) with 2 ≤ s ≤ 7, s < r, and that of type (p, p + 1) with p ≥ 2, which enables
us to decide the sharp-unknotting number for 39 torus knots listed in Table 1. In
order to give a lower bound we use the unknotting number given by Kromheimer
and Mrowka, and the signature of a torus knot; also we use the Arf invariant which
decides the parity of the sharp-unknotting number.

This paper is organized as follows: In Sect. 2, we show a lemma to give an upper
bound for the sharp-unknotting number of a torus knot. In Sect. 3, we give some
formulas to give an estimation for the sharp-unknotting number of a torus knot.
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In Sect. 4, we estimate the sharp-unknotting number of the torus knots of types as
mentioned above.

Table 1: u#(p, q).

u#(p, q) (p, q)

1 (2, 3), (2, 5), (3, 4)
2 (2, 7), (2, 9), (3, 5), (3, 7)
3 (2, 11), (2, 13), (3, 8), (3, 10), (4, 5), (5, 6)
4 (2, 15), (2, 17), (3, 11), (3, 13), (4, 7), (4, 9), (5, 7)
5 (2, 21), (3, 14), (3, 16), (4, 11), (5, 8)
6 (3, 19), (5, 11), (7, 8)
7 (3, 22) , (5, 12)
8 (7, 10)
9 (5, 16), (6, 13)
10 (7, 12), (9, 10)
12 (7, 15)
15 (11, 12)
21 (13, 14)
28 (15, 16)

2. Braids and torus knots

An n-braid is an element of the n-braid group Bn generated by the elementary
n-braids σ1, σ2, σ3, · · · , σn−1 as shown in Fig. 2. They are related by the braid
relations:

σiσj = σjσi, |i− j| ≥ 2;(1)

σiσi+1σi = σi+1σiσi+1, i = 1, 2, · · · , n− 2.(2)

n
n–1

4
3
2
1

σ1 σ2 σ3 σn−1

Figure 2: Elementary n-braids.
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The half-twist ∆n of an n-braid is given by

∆n = (σn−1σn−2 · · ·σ2σ1) (σn−1σn−2 · · ·σ2) · · · (σn−1σn−2)σn−1,(3)

and the braid ∆2
n is called the full-twist, which generates the center of Bn. For a

pair of coprime positive integers (p, q), we define a torus knot of type (p, q) as the
closure of the p-braid

(4) (σp−1σp−2 · · ·σ2σ1)
q
,

which we denote by T(p, q). We can deform a torus knot into a trivial knot using
the twisting operations considered in the following lemma, from which we obtain
an upper bound for the sharp-unknotting number of a torus knot.

Lemma 2.1. (i) A full-twist of a (2k + 1)-braid is deformed into a trivial braid by
applying sharp-moves k(k + 1)/2 times.
(ii) Two full-twists of a 2k-braid is deformed into a trivial braid by applying sharp-
moves k2 times.

Proof. (i) A full-twist of a (2k + 1)-braid is considered as a link diagram as shown
in Fig. 3(a). By applying sharp-moves k times around the asterisks we may deform
it into a diagram as in Fig. 3(b), which is isotopic to a (2k+1)-braid as in Fig. 3(c).

Since it contains one full-twist of a (2k−1)-braid and
∑k

i=1 i = k(k+ 1)/2, we have
the result; cf. [8, Fig. 2.6].

*
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Figure 3: Sharp-moves on a full-twist of a (2k + 1)-braid.

(ii) For k = 1, see Fig. 4; cf. [3, Fig. 8]: The two diagrams of Figs. 4(a) and 4(b) and
those of Figs. 4(c) and 4(d) are isotopic, and the diagram of Fig. 4(b) is deformed
into that of Fig. 4(c) by applying one sharp-move.
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A full-twist of a 2k-braid is considered as a 2k-braid as shown in Fig. 5(a). By
applying sharp-moves k − 1 times around the asterisks we may deform it into a
2k-braid as shown in Fig. 5(b), which is isotopic to a 2k-braid as shown in Fig. 5(c).
It contains a full-twist of a 2-braid and one of a (2k−2)-braid. Thus we may deform
two full-twists of a 2k-braid into two full-twists of a 2-braid and two full-twists of
a (2k − 2)-braid by applying sharp-moves 2k − 2 times, from which we remove two
full-twists of a 2-braid by applying another sharp-move. Therefore, applying sharp-
moves (2k− 1) times on two full-twists of a 2k-braid, we obtain two full-twists of a

(2k − 2)-braid. Since
∑k

i=1 (2i− 1) = k2, we obtain the result. �

*

*
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Figure 4: A twisting operation.
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Figure 5: Sharp-moves on a full-twist of a 2k-braid.
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Remark 2.2. The twisting operations considered in Lemma 2.1 (i) and (ii) are
called an oriented (2k+1, 1)-move and an oriented (2k, 2)-move, respectively, in [8].

3. Formulas for an estimation for the sharp-unknotting number

We give some relations to estimate the sharp-unknotting number of a torus knot.
Let u(K ) be the usual unknotting number of a knot K. Then from the definition,
we have

(5) u#(K ) ≥ du(K )/4e,

where du(K )/4e is the smallest integer not less than u(K )/4. Let σ̃(K) be the
signature of a knot K, where σ̃(T(2, 3)) = 2 for the right-hand (positive) trefoil
knot T(2, 3), and Arf(K ) ∈ Z/2Z the Arf invariant of K, where Arf(K ) ≡ a2(K )
(mod 2) with a2(K) the second coefficient of the Conway polynomial of K. The
following proposition is due to Murakami, where Eqs. (6) and (7) are given in
Theorems 3.2 and 3.5 in [3], respectively.

Proposition 3.1. Let K and K ′ be knots such that K is obtained from K ′ by a
single sharp-move. Then the following hold:

|σ̃(K)− σ̃(K ′)| = 2, 4, or 6;(6)

Arf(K )−Arf(K ′) ≡ 1 (mod 2).(7)

This implies:

Corollary 3.2.

u#(K ) ≥ d|σ̃(K)|/6e ;(8)

u#(K ) ≡ Arf(K ) (mod 2).(9)

Note that combining 2u(K ) ≥ |σ̃(K )| (cf. [6, Theorem 6.4.8]) and Eq. (5), we
obtain u#(K ) ≥ d|σ̃(K )|/8e for a knot K.

Remark 3.3. The sharp-unknotting number is also estimmated from below by
using homology invariants from a cyclic covering of the knot space [4], which is
useless in considering a torus knot.

4. Estimations of the sharp-unknotting numbers of torus knots

We denote the unknotting number, the sharp-unknotting number, the Arf in-
variant, and the signature of the torus knot T(p, q), p, q > 0, by u(p, q), u#(p, q),
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Arf(p, q), and σ̃(p, q), respectively. Then we have:

u(p, q) = (p− 1)(q − 1)/2;(10)

Arf(p, q) ≡ (p2 − 1)(q2 − 1)/24 (mod 2).(11)

Eq. (10) is due to Kronheimer and Mrowka [2] and Eq. (11) follows the formula
a2(T(p, q)) = (p2−1)(q2−1)/24 given in [7]. The signature σ̃(p, q) can be calculated
by using the recurrence formula given in [1, Theorem 5.2]; cf. [6, Theorem 7.5.1].

4.1. (r, 2)-torus knots. From Lemma 2.1(ii), we have

(12) u#(4m ± 1, 2) ≤ m (m > 0),

which was already given by Tetsuo Shibuya; see [3, p. 45]. Since σ̃(r, 2) = r − 1,
r > 0, Eq. (8) implies u#(4m + 1, 2) ≥ d2m/3e and u#(4m − 1, 2) ≥ d(2m − 1)/3e.

From Eq. (11), we have Arf(4m ± 1, 2) ≡ m (mod 2). Using these formulas,
we obtain Table 2. In particular, we can decide the following sharp-unknotting
numbers:

u#(3, 2) = u#(5, 2) = 1; u#(7, 2) = u#(9, 2) = 2;

u#(11, 2) = u#(13, 2) = 3; u#(15, 2) = u#(17, 2) = 4;

u#(21, 2) = 5.

(13)

Table 2: u#(r , 2), r ≥ 3.

r Arf(r , 2) Lower bound Upper bound

24l ± 1 0 4l 6l
24l + 3, 24l + 5 1 4l + 1 6l + 1
24l + 7, 24l + 9 0 4l + 2 6l + 2

24l + 11, 24l + 13 1 4l + 3 6l + 3
24l + 15, 24l + 17 0 4l + 4 6l + 4

24l + 19 1 4l + 3 6l + 5
24l + 21 1 4l + 5 6l + 5

4.2. (r, 3)-torus knots. From Lemma 2.1(i), we have

(14) u#(3m ± 1, 3) ≤ m (m > 0),

Since

σ̃(6k + 1, 3) = 8k, σ̃(6k + 2, 3) = 8k + 2;

σ̃(6k + 4, 3) = 8k + 6, σ̃(6k + 5, 3) = 8k + 8,

(15)

where k ≥ 0; cf. [5, Proposition 9.1], we have

u#(6k + 1, 3) ≥ 4k/3, u#(6k + 2, 3) ≥ (4k + 1)/3;

u#(6k + 4, 3) ≥ (4k + 3)/3, u#(6k + 5, 3) ≥ (4k + 4)/3.

(16)
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Using Eqs. (5) and (10), we have

u#(3m + 1, 3) ≥ 3m/4, u#(3m − 1, 3) ≥ (3m − 2)/4.(17)

From Eq. (11), we have

(18) Arf(3m ± 1, 3) ≡ m (mod 2).

Combining Eqs. (14), (16)-(18), we obtain Table 3. In particular, we can decide the
following sharp-unknotting numbers:

u#(4, 3) = 1; u#(5, 3) = u#(7, 3) = 2;

u#(8, 3) = u#(10, 3) = 3; u#(11, 3) = u#(13, 3) = 4;

u#(14, 3) = u#(16, 3) = 5; u#(19, 3) = 6; u#(22, 3) = 7.

(19)

Table 3: u#(r , 3), r ≥ 4.

r Arf(r , 3) Lower bound Upper bound

24l − 5 0 6l 8l − 2
24l ± 1 0 6l 8l

24l + 2, 24l + 4 1 6l + 1 8l + 1
24l − 2 1 6l + 1 8l − 1

24l + 5, 24l + 7 0 6l + 2 8l + 2
24l + 8, 24l + 10 1 6l + 3 8l + 3
24l + 11 24l + 13 0 6l + 4 8l + 4

24l + 17 0 6l + 4 8l + 6
24l + 14, 24l + 16 1 6l + 5 8l + 5

24l + 20 1 6l + 5 8l + 7

4.3. (p, p + 1)-torus knots. Suppose m ≥ 2. From Lemma 2.1(i), by applying
sharp-moves m(m− 1)/2 times on T(2m, 2m − 1), we obtain T(1, 2m − 1), which is
a trivial knot, and by applying sharp-moves m(m + 1)/2 times on T(2m, 2m + 1),
we obtain T(−1, 2m + 1), which is a trivial knot. Thus we have

(20) u#(2m, 2m + ε) ≤ m(m + ε)/2 (ε = ±1).

Using the recurrence formula given in [1], and (10), we have

σ̃(2m, 2m− 1) = 2m2 − 2, σ̃(2m, 2m+ 1) = 2m2;

u(2m, 2m − 1) = (m − 1)(2m − 1), u(2m, 2m + 1) = m(2m − 1),

(21)

from which we have

(22) du(2m, 2m + ε)/4e ≥ dσ̃(2m, 2m+ ε)/6e .
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Thus by Eqs. (5) and (8) we will use du(2m, 2m + ε)/4e as the lower bound of the
sharp-unknotting number of T(2m, 2m + ε), that is,

u#(2m, 2m − 1) ≥ d(m − 1)(2m − 1)/4e ;

u#(2m, 2m + 1) ≥ dm(2m − 1)/4e .
(23)

From Eq. (11), we have

(24) Arf(2m, 2m + ε) ≡ (m + ε)(2m − 1)(2m)(2m + 1)

12
(mod 2).

Using Eqs. (20), (23), (24), we obtain Table 4. In particular, we can decide the
following sharp-unknotting numbers:

u#(4, 5) = u#(5, 6) = 3; u#(7, 8) = 6; u#(9, 10) = 10;

u#(11, 12) = 15; u#(13, 14) = 21; u#(15, 16) = 28.

(25)

Table 4: u#(p, p + 1), p ≥ 2.

p Arf(p, p + 1) Lower bound Upper bound

8k − 2 0 8k2 − 5k + 1 8k2 − 2k
8k − 1 0 8k2 − 3k + 1 8k2 − 2k

8k 0 8k2 − k 8k2 + 2k
8k + 1 0 8k2 + k 8k2 + 2k
8k + 2 1 8k2 + 3k + 1 8k2 + 6k + 1
8k + 3 1 8k2 + 5k + 1 8k2 + 6k + 1
8k + 4 1 8k2 + 7k + 2 8k2 + 10k + 3
8k + 5 1 8k2 + 9k + 3 8k2 + 10k + 3

4.4. (r, 4)-torus knots. From Lemma 2.1(ii), by applying sharp-moves 4k times
on T(8k + i , 4), we obtain T(i , 4). Since T(±1, 4) is trivial, u#(3, 4) = 1 from
Eq. (19), and u#(5, 4) = 3 from Eq. (25), we have

u#(8k + 1, 4) ≤ 4k ; u#(8k + 3, 4) ≤ 4k + 1;

u#(8k + 5, 4) ≤ 4k + 3; u#(8k + 7, 4) ≤ 4k + 4,

(26)

where k ≥ 0. Using the recurrence formula given in [1], and (10), we have

σ̃(4m+ 1, 4) = 8m, σ̃(4m− 1, 4) = 8m− 2;

u(4m + 1, 4) = 6m, u(4m − 1, 4) = 6m − 3,

(27)

where m > 0, cf. [5, Proposition 9.2]. Then using Eqs. (5) and (10), we have

u#(4m + 1, 4) ≥ 3m/2, u#(4m − 1, 4) ≥ (6m − 3)/4.(28)
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From Eq. (11), we have

(29) Arf(4m ± 1, 4) ≡ m (mod 2).

Using Eqs. (26), (28), (29), we obtain Table 5. In particular, we can decide the
following sharp-unknotting numbers:

u#(7, 4) = u#(9, 4) = 4; u#(11, 4) = 5.(30)

Table 5: u#(r , 4), r ≥ 5.

r Arf(r , 4) Lower bound Upper bound

16l ± 1 0 6l 8l
16l + 3 1 6l + 1 8l + 1
16l + 5 1 6l + 3 8l + 3

16l + 7 , 16l + 9 0 6l + 4 8l + 4
16l + 11 1 6l + 5 8l + 5
16l + 13 1 6l + 5 8l + 7

4.5. (r, 5)-torus knots. From Lemma 2.1(i), by applying sharp-moves 3m times
on T(5m + i , 5), we obtain T(i , 5). Since T(±1, 5) is trivial, u#(2, 5) = 1 from
Eq. (13), and u#(3, 5) = 2 from Eq. (19), we have

u#(5m ± 1, 5) ≤ 3m; u#(5m + 2, 5) ≤ 3m + 1;

u#(5m + 3, 5) ≤ 3m + 2,

(31)

where m ≥ 0. Using the recurrence formula given in [1], and (10), we have

σ̃(10k + 1, 5) = 24k, σ̃(10k + 2, 5) = 24k + 4;

σ̃(10k + 3, 5) = σ̃(10k + 4, 5) = 24k + 8;

σ̃(10k + 6, 5) = σ̃(10k + 7, 5) = 24k + 16;

σ̃(10k + 8, 5) = 24k + 20, σ̃(10k + 9, 5) = 24k + 24;

u(r , 5) = 2(r − 1),

(32)

where k ≥ 0, r > 0. From Eq. (11), we have

(33) Arf(r , 5) ≡ r − 1 (mod 2).

Then from Eqs. (31)–(33), we obtain Table 6. In particular, we can decide the
following sharp-unknotting numbers:

u#(7, 5) = 4; u#(8, 5) = 5; u#(11, 5) = 6;

u#(12, 5) = 7; u#(16, 5) = 9.

(34)
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Table 6: u#(r , 5), r ≥ 6.

r Arf(r , 5) Lower bound Upper bound

10k + 1 0 5k 6k
10k + 2 1 5k + 1 6k + 1
10k + 3 0 5k + 1 6k + 2
10k + 4 1 5k + 2 6k + 3
10k + 6 1 5k + 3 6k + 3
10k + 7 0 5k + 3 6k + 4
10k + 8 1 5k + 4 6k + 5
10k + 9 0 5k + 4 6k + 6

4.6. (r, 6)-torus knots. From Lemma 2.1(ii), by applying sharp-moves 9k times
on T(12k + i , 6), we obtain T(i , 6). Since T(±1, 6) is trivial, u#(5, 6) = 3 from
Eq. (25), and u#(7, 6) = 4 or 6 from Table 4, we have

u#(12k ± 1, 6) ≤ 9k ; u#(12k + 5, 6) ≤ 9k + 3;

u#(12k + 7, 6) ≤ 9k + 6,

(35)

where k ≥ 0. Using the recurrence formula given in [1], and (10), we have

σ̃(6m+ 1, 6) = 18m, σ̃(6m+ 5, 6) = 18m+ 16;

u(12k + 1, 6) = 30k ; u(12k + 5, 6) = 30k + 10;

u(12k + 7, 6) = 30k + 15; u(12k + 11, 6) = 30k + 25,

(36)

where m ≥ 0, k ≥ 0. From Eq. (11), we have

Arf(12k ± 1, 6) ≡ Arf(12k + 7, 6) ≡ k (mod 2);

Arf(12k + 5, 6) ≡ k + 1 (mod 2).

(37)

Then from Eqs. (35)–(37), we obtain Table 7. In particular, we can decide the
following sharp-unknotting number:

u#(13, 6) = 9.(38)

4.7. (r, 7)-torus knots. From Lemma 2.1(i), by applying sharp-moves 6m times
on T(7m + i , 7), we obtain T(i , 7). Since T(±1, 7) is trivial, u#(2, 7) = u#(3, 7) = 2
from Eqs. (13) and (19) , u#(4, 7) = 4, u#(6, 7) = 4 or 6 from Eq. (30) and Table 4,
we have

u#(7m ± 1, 7) ≤ 6m;

u#(7m + 2, 7), u#(7m + 3, 7) ≤ 6m + 2;

u#(7m + 4, 7), u#(7m + 5, 7) ≤ 6m + 4;

u#(7m + 6, 7) ≤ 6m + 6,

(39)
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Table 7: u#(r , 6), r ≥ 7.

r Arf(r , 6) Lower bound Upper bound

24l + 1 0 15l 18l
24l + 5 1 15l + 3 18l + 3
24l + 7 0 15l + 4 18l + 6
24l + 11 1 15l + 7 18l + 9
24l + 13 1 15l + 8 18l + 9
24l + 17 0 15l + 10 18l + 12
24l + 19 1 15l + 12 18l + 15
24l + 23 0 15l + 14 18l + 18

where m ≥ 0. Using the recurrence formula given in [1], and (10), we have

σ̃(14k + 1, 7) = 48k, σ̃(14k + 2, 7) = 48k + 6;

σ̃(14k + 3, 7) = 48k + 8, σ̃(14k + 4, 7) = 48k + 14;

σ̃(14k + 5, 7) = 48k + 16, σ̃(14k + 6, 7) = 48k + 18;

σ̃(14k + 8, 7) = 48k + 30, σ̃(14k + 9, 7) = 48k + 32;

σ̃(14k + 10, 7) = 48k + 34, σ̃(14k + 11, 7) = 48k + 40;

σ̃(14k + 12, 7) = 48k + 42, σ̃(14k + 13, 7) = 48k + 48;

u(r , 7) = 3(r − 1),

(40)

where k ≥ 0, r > 0. From Eq. (11), we have

(41) Arf(r , 7) = 0 (mod 2).

Then from Eqs. (39)–(41), we obtain Table 8. In particular, we can decide the
following sharp-unknotting numbers:

u#(10, 7) = 8; u#(12, 7) = 10; u#(15, 7) = 12.(42)

5. Final remark

In order to decide the sharp-unknotting numbers listed in Table 1, we do not
need the signature, that is, we obtain Table 1 without using Eq. (8). Remember
that the unknotting number of a torus knot given in Eq. (10) cannot be obtained by
only using the signature. Also, it seems that we will not be able to make a further
decision of the sharp-unknotting number of a torus knot if we continue to calculate
by the method in this paper.
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Table 8: u#(r , 7), r ≥ 8.

r Arf(r , 7) Lower bound Upper bound

28l + 1 0 21l 24l
28l + 2 0 21l + 1 24l + 2
28l + 3 0 21l + 2 24l + 2

28l + 4, 28l + 5 0 21l + 3 24l + 4
28l + 6 0 21l + 4 24l + 6
28l + 8 0 21l + 6 24l + 6
28l + 9 0 21l + 6 24l + 8
28l + 10 0 21l + 7 24l + 8
28l + 11 0 21l + 8 24l + 10
28l + 12 0 21l + 9 24l + 10
28l + 13 0 21l + 9 24l + 12
28l + 15 0 21l + 11 24l + 12

28l + 16, 28l + 17 0 21l + 12 24l + 14
28l + 18 0 21l + 13 24l + 16
28l + 19 0 21l + 14 24l + 16
28l + 20 0 21l + 15 24l + 18
28l + 22 0 21l + 16 24l + 18
28l + 23 0 21l + 17 24l + 20
28l + 24 0 21l + 18 24l + 20
28l + 25 0 21l + 18 24l + 22
28l + 26 0 21l + 19 24l + 22
28l + 27 0 21l + 20 24l + 24
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