References
- Q. S. Chi, A curvature characterization of certain locally rank-one symmetric spaces, J. Diff. Geom., 28(1988), 187-202. https://doi.org/10.4310/jdg/1214442277
- J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex projective space, Tsukuba J. Math., 22(1998), 145-156. https://doi.org/10.21099/tkbjm/1496163476
- J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar., 80(1998), 155-167. https://doi.org/10.1023/A:1006585128386
- U-H. Ki, H.J. Kim and A.A. Lee, The Jacobi operator of real hypersurfaces in a complex Space form, Commun. Korean Math. Soc., 13(1998), 545-600.
-
M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in
$P^n(C)$ , Math. Ann., 276(1987), 487-497. https://doi.org/10.1007/BF01450843 - M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space III, Hokkaido Math. J., 22(1993), 63-78. https://doi.org/10.14492/hokmj/1381413124
- M. Loknherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata, 74(1999), 267-286. https://doi.org/10.1023/A:1005000122427
- M. Okumura, On some real hypersurfaces of a c omplex projective space, Trans. A. M. S., 212(1975), 355-364. https://doi.org/10.1090/S0002-9947-1975-0377787-X
- M. Ortega, J. D. Perez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math., 36(2006), 1603-1613. https://doi.org/10.1216/rmjm/1181069385
- J. D. Perez and F. G. Santos, On the Lie derivative of structure Jacobi operator of real hypersurfaces in complex projective space, Publ. Math. Debrecen, 66(2005), 269-282.
- J. D. Perez and F. G. Santos, Real hypersurfaces in complex projective space with recurrent structure Jacobi operator, Diff. Geom. Appl., 26(2008), 218-223. https://doi.org/10.1016/j.difgeo.2007.11.015
-
J. D. Perez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie
$\varepsilon$ -parallel, Diff. Geom. Appl., 22(2005),181-188. https://doi.org/10.1016/j.difgeo.2004.10.005 - J. D. Perez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is D-parallel, Bull. Belgian Math. Soc. Simon Stevin, 13(2006), 459-469.
- R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10(1973), 495-506.
- R. Takagi, Real hypersurfaces in complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27(1975), 43-53. https://doi.org/10.2969/jmsj/02710043
- R. Takagi, Real hypersurfaces in complex projective space with constant principal curvatures II, J. Math. Soc. Japan, 27(1975), 507-516. https://doi.org/10.2969/jmsj/02740507
Cited by
- Semi-parallelism of normal Jacobi operator for Hopf hypersurfaces in complex two-plane Grassmannians vol.172, pp.2, 2013, https://doi.org/10.1007/s00605-013-0553-7
- Semi-parallel symmetric operators for Hopf hypersurfaces in complex two-plane Grassmannians vol.177, pp.4, 2015, https://doi.org/10.1007/s00605-015-0778-8