DOI QR코드

DOI QR Code

Representations of the Braid Group and Punctured Torus Bundles

  • 투고 : 2007.12.26
  • 심사 : 2008.01.10
  • 발행 : 2009.03.31

초록

In this short note, we consider a family of linear representations of the braid group and the fundamental group of a punctured torus bundle over the circle. We construct an irreducible (special) unitary representation of the fundamental group of a closed 3-manifold obtained by the Dehn filling.

키워드

참고문헌

  1. A. Behn and A. B. Van der Merwe, An algorithmic version of the theorem by Latimer and MacDuffee for $2\times2$ integral matrices, Linear Algebra Appl., 346(2002), 1-14. https://doi.org/10.1016/S0024-3795(01)00518-3
  2. J. Birman, Braids, links, and mapping class groups, Ann. Math. Stud. 82 Princeton Univ. Press, Princeton, N. J., (1974).
  3. J. Dyer, E. Formanek and E. Grossman, On the linearity of automorphism groups of free groups, Arch. Math., (Basel), 38(1982), 404-409. https://doi.org/10.1007/BF01304807
  4. T. Kitano, T. Morifuji and M. Takasawa, $L^2$-torsion invariants of a surface bundle over $S^1$, J. Math. Soc. Japan, 56(2004), 503-518. https://doi.org/10.2969/jmsj/1191418642
  5. B. Mangum and P. Shanahan, Three-dimensional representations of punctured torus bundles, J. Knot Theory Ramifications, 6(1997), 817-825. https://doi.org/10.1142/S0218216597000455
  6. T. Morifuji, Families of representations of punctured torus bundles, J. Math. Sci. Univ. Tokyo, 8(2001), 201-210.
  7. H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math., 186(2001), 85-104. https://doi.org/10.1007/BF02392716