DOI QR코드

DOI QR Code

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites

변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능

  • Kim, Sun-Woo (Dept. of Architectural Engineering, Chungnam National University) ;
  • Yun, Hyun-Do (Dept. of Architectural Engineering, Chungnam National University) ;
  • Jang, Gwang-Soo (Dept. of Architectural Engineering, Chungnam National University) ;
  • Yun, Yeo-Jin (Dept. of Civil System Engineering, Konyang University)
  • Published : 2009.06.30

Abstract

In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

지진이 빈번하게 발생하는 지역에서는 비내진상세구조물은 지진 발생시 연약층을 형성하고 취성적 붕괴를 일으키게 된다. 그러나, 기존 구조물을 해체하고 내진상세 구조물을 신축하는 방법은 건설폐기물, 환경오염 및 민원 등 여러가지 문제들을 가지는 등 비경제적 방법이라 할 수 있다. 따라서 기존 구조물이 내진성능을 만족하도록 내진보강에 관한 많은 연구가 이루어졌으며, 이러한 내진보강방법에는 끼움벽, 철골브레이스, 연속벽, 부벽, 날개벽, 기둥/보의 자켓팅 등이 있다. 이 중 끼움벽 골조는 큰 변형과 접합부에서의 회전이 발생하는 골조와, 비교적 작은 변형에서도 전단파괴를 야기하는 끼움전단벽 등 복합적인 거동특성을 나타낸다. 따라서, 이러한 시스템의 거동특성은 개개의 골조나 벽에서 나타나는 거동특성과 매우 다르게 된다. 본 연구에서는 끼움벽의 내진성능을 평가하고자 하였으며, 손상에너지의 효과적 흡수를 위해 변형경화형 시멘트 복합체 (SHCC)를 사용하였다. 실험은 1/3 축소모형의 끼움벽을 반복가력하는 것으로 계획하였다. 실험 결과, SHCC 끼움벽에서는 섬유의 가교작용을 통해 시멘트 복합체 내 응력을 재분배함으로써 미세균열이 발생하였으며, 강도 및 에너지소산능력이 우수한 것으로 나타났다.

Keywords

References

  1. 건설교통부, www.moct.go.kr, 건설교통부, 2005
  2. Ghosh, S. K., Fanella, D. A., and Liang, X., Seismic and Wind Design of Concrete Buildings, International Code Council, 2005, 560 pp.
  3. Phan, L. T, Todd, D. R., and Lew, H. S., Strengthening Methodology For Lightly Reinforced Concrete Frames-I, NISTIR 5128, National Institute of Standards and Technology, 1993, 108 pp.
  4. Phan, L. T., Todd, D. R., and Lew, H. S., Strengthening Methodology for Lightly Reinforced Concrete Frames-II, Recommended Calculation Techniques for the Design of Inilll Walls, NISTIR 5421, National Institute of Standards and Technology, 1994, 44 pp.
  5. Sugano, S., “Guidelines for Seismic Retrofitting (Strengthening, Toughening, and/or Stiffening), Design of Existing Reinforced Concrete Buildings,” Proceeding of the Second Seminar on Repair and Retrofit of Structures, Ann Arbor, Michigan, 1981, pp. 189-246
  6. Harris, H. G., Ballouz, G. R., and Kopatz, K. W., “Preliminary Studies in Seismic Retrofitting of Lightly Reinforced Concrete Frames Using Masonry Infills,” Proceeding, 6th North american Masonry Conference, Masonry Society (US), Philadelphia, 1993, pp. 383-395
  7. Tomazevic, M. and Zarnic, R., “The Behaviour of Horizontally Reinforced Masonry Walls Subjected to Cyclic Lateral in-Plane Reversals,” Proceeding of the 8th European Conference on Earthquake Engineering 4, 1984, pp. 1-8
  8. 윤현도, 김선우, 이갑원, 최창식, 이혜연, “고인성 시멘트 복합체를 사용한 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 내진성능,” 대한건축학회 논문집 (구조계), 22권, 5호, 2006, pp. 31-38
  9. Li, V. C., ECC–Tailored Composites through Micromechanical Modeling, Fiber Reinforced Concrete: Present and the Future Edited by Banthia et al, CSCE, Montreal, 1998, pp. 64-97
  10. Kawamata A., Mihashi H., and Fukuyama, H., “Properties of Hybrid Fiber Reinforced Cement-based Composites,” Journal of Advanced Concrete Technology, Vol. 1, No. 3, 2003, pp. 283-290 https://doi.org/10.3151/jact.1.283
  11. 윤현도, 김용철, 김선우, “보강섬유 종류에 따른 변형경화형 시멘트 복합체의 거동특성,” 대한건축학회 논문집(구조계), 24권, 5호, 2008, pp. 141-148
  12. (財)日本建築合試驗所構造部, 鐵筋コンクリ一ト增設壁耐 震補强設計及び施工指, 2001, 198 pp.

Cited by

  1. The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.541
  2. Influence of Strain-Hardening Cement Composite's Tensile Properties on the Seismic Performance of Infill Walls vol.24, pp.1, 2012, https://doi.org/10.4334/JKCI.2012.24.1.003