DOI QR코드

DOI QR Code

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method

분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구

  • Song, Ha-Won (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Chang-Hong (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Kewn-Chu (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Ann, Ki-Yong (Dept. of Civil and Environmental Engineering, Yonsei University)
  • 송하원 (연세대학교 사회환경시스템공학부) ;
  • 이창홍 (연세대학교 사회환경시스템공학부) ;
  • 이근주 (연세대학교 사회환경시스템공학부) ;
  • 안기용 (연세대학교 사회환경시스템공학부)
  • Published : 2009.06.30

Abstract

The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.

콘크리트 내 철근부식상에 있어 염화물이온의 중요성은 임계염화물농도 (CTL)로서 나타내어진다. CTL은 철근을 둘러싼 부동태피막의 파괴를 유지하게끔 하는데 필요한 염화물량으로 정의되며 염화물량이 CTL에 도달할 경우 철근의 부식은 시작된다. CTL의 중요성에도 불구하고 기존의 콘크리트 구조물의 내구수명 예측을 위한 염화물량은 1 $m^3$의 단위체적당 1.2 kg 혹은 시멘트 중량당 0.4%로서 제시되고 있으며 이는 염해부식환경하의 다양한 환경 인자에 따른 한계치 설정에 대한 불확실성을 고려하지 않은 값이라 할 수 있다. 본 논문에서는 부식개시의 지표로서 결합재의 특성에 따른 부식저항성 및 부식진전에 따른 비율에 대하여 실험연구를 수행하였다. 실험시편으로는 직경 10 mm의 원형 철근을 모르타르 내 몰드에 삽입하여 OPC와 40%OPC+60%GGBS, 70%OPC+30%PFA 및 90%OPC+10%의 SF을 치환한 시편에 대하여 W/C=0.4의 조건으로서 실험을 수행하였다. 각 시편에는 다시 10단계 (0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder)의 내재염분 농도조건을 부여하여 부식전류를 측정하였다. 시편은 28일 양생을 하였으며 수분손실 및 염분손실을 방지하고자 폴리에틸렌 필름을 이용한 도포양생을 수행하였다. 선형분극저항 측정법에 의한 실험결과로서 각 결합재 치환률에 따른 부식임계치가 결정되었다. 또한 OPC, 60%GGBS, 30%PFA 및 10%SF의 혼입치환률을 적용한 시멘트 모르타르의 CTL 값은 시멘트 중량당 1.6%, 0.45%, 0.8% 및 2.15%의 총염화물 농도로 나타나고 있음을 확인하였다.

Keywords

References

  1. Song, H. W., Lee C. H., and Ann, K. Y., “Factors Influencing Chloride Transport in Concrete Structures Exposed to Marine Environment,” Cem Concr Comp, Vol. 30, I. 2, 2008, pp. 113-121 https://doi.org/10.1016/j.cemconcomp.2007.09.005
  2. Song, H. W. and Ann, K. Y., “Chloride Threshold Level for Corrosion of Steel in Concrete,” Corros Sci., Vol. 49, 2007, pp. 4113-4133 https://doi.org/10.1016/j.corsci.2007.05.007
  3. Glass, G. K. and Buenfeld, N. R., “The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete,” Corros Sci., Vol. 39 1997, pp. 1001-1013 https://doi.org/10.1016/S0010-938X(97)00009-7
  4. Saraswathy. V. and Song, H. W, “Performance of Galvanized and Stainless Steel Rebars in Concrete under Macrocell Corrosion Conditions,” Mat Corros, Vol. 56, No. 10, 2005, pp. 685-691 https://doi.org/10.1002/maco.200503888
  5. Collepardi, M., Marcialis, A., and Turriziani, R., “The Kinetics of Penetration of Chloride Ions into the Concrete,” II Cement, 2nd Edition, Clarendon Press, Oxford, 1975, 21 pp.
  6. Song, H. W., Jung, M. S., and Ann, K. Y., “Resistance of Cementitous Binders against a Fall in the pH at Corrosion Initiation,” International Corrosion Engineering Conference, May 20-24, 2007, pp. 91-97 (In CD)
  7. Song, H. W., Lee, C. H., Jung, M. S., and Ann, K. Y., “Development of Chloride Binding Capacity in Cement Pastes and the Influence of the pH of Hydration Products,” Can Civ. Engr. J, Vol. 35, No. 12, pp. 1427-1434
  8. Song, H. W., V. Saraswathy., S. Muralidharan., and K.Thangavel., “Tolerance Limit of Chloride for Steel in Blended Cement Mortar Using the Cyclic Polarisation Technique,” J. Appl Electrochem, Vol. 38, 2008, pp. 445~450 https://doi.org/10.1007/s10800-007-9457-3
  9. Song, H. W., Lee, C. H., and Ann, K. Y., “Prediction of Chloride Profile Considering Binding of Chlorides in Cement Matrix,” International Corrosion Engineering Conference, May 20-24. 2007, pp. 84-90 (In CD)
  10. Suryavanshi, A. K., Scantlebury, J. D., and lyon, S. B., “Corrosion of Reinforcement Steel Embedded in High Water-Cement Ratio Concrete Contaminated with Chloride,” Cem. Concr. Comp., Vol. 20, 1998, pp. 263-281 https://doi.org/10.1016/S0958-9465(98)00018-3
  11. Swamy, R. N., “Resistance to Chlorides of Galvanized Rebars,” In: Corrosion of Reinforcement in Concrete, C. L. Page, K. W. J. Treadaway and P. B. Bamforth, eds., Elsevier Applied Science, London UK, 1990, pp. 586-600
  12. Sykes, J. M. and Balkwill, P. H. “Simulating the Pitting Corrosion of Steel Reinforcement in Concrete,” In: The Use of Synthetic Environments for Corrosion Testing, ASTM STP 970, P. E. Francis and T. S. Lee, eds., 1988, pp. 255-263
  13. Ann, K. Y., Enhancing the Chloride Threshold Level for Steel Corrosion in Concrete, Imperial College, UK, Doctoral Thesis, 2005, pp. 1-254
  14. Buenfeld, N. R. and Broomfield, J. P., “Influence of Electrochemical Chloride Extraction on the Bond between Steel and Concrete,” Mag. of Conc. Res., Vol. 52, 2000, pp. 79~91 https://doi.org/10.1680/macr.2000.52.2.79
  15. Brown, P., “Method of Resisting Corrosion in Metal Reinforcing Elements Contained in Concrete and Related Compounds and Structures,” Unites States Patent No. 6755925, 2004, pp. 1-8
  16. Hausmann, D. A., “Steel Corrosion in Concrete; How Does It Occur?,” Materials and Protection, Vol. 6, 1967, pp. 19-23
  17. Gouda, V. K., “Corrosion and Corrosion Inhibition of Reinforcing Steel; 1-Immersion in Alkaline Solution,” British Corros J, Vol. 5, 1970, pp. 198-203 https://doi.org/10.1179/000705970798324450
  18. Goni, S. and Andrade, C., “Synthetic Concrete Pore Solution Chemistry and Rebar Corrosion in the Presence of Chloride,” Cem. Conc. Res., Vol. 20, 1990, pp. 525-539 https://doi.org/10.1016/0008-8846(90)90097-H
  19. Yonesawa, T., Ashworth, V., and Procter, R. P. M., “Pore Solution Composition and Chloride Effects on the Corrosin of Steel in Concrete,” Corros, Vol. 44, 1988, pp. 489-499
  20. Izquierdo, d., Alonso, C., Andrade, C. and Castellote, M, “Potentiostatic Determination of Chloride Threshold Values for Rebar Depassivation: Experimental and Statistical Study,” Electrochemica Acta, Vol. 49, 2004, pp. 2731-2739 https://doi.org/10.1016/j.electacta.2004.01.034
  21. Morris, W., Vico, A., and Vazquez, M., “Chloride Induced Corrosion of Reinforcing Steel Evaluated by Concrete Resistivity Measurements,” Electrochemica Acta, Vol. 49, 2004, pp. 4447-4453 https://doi.org/10.1016/j.electacta.2004.05.001
  22. Oh, B. H., Jang, S. Y., and Shin, Y. S., “Experimental Investigation of the Threshold Chloride Concentratin for Corrosin Initiation in Reinforced Concrete Structures,” Mag. Concr. Res., Vol. 55, 2003, pp. 117-124 https://doi.org/10.1680/macr.2003.55.2.117
  23. Alonso, C., Castellote, M., and Andrade, C., “Chloride Threshold Dependence of Pitting Potential of Reinforcements,” Electrochemica Acta, Vol. 47, 2002, pp. 3469-3481 https://doi.org/10.1016/S0013-4686(02)00283-9
  24. Alonso, C., Andrade, C., Catellote, M., and Castro, P., “Chloride Threshold Values to Depassivate Reinforcing Bars in a Standardized OPC Mortar,” Cem. Concr. Res., Vol. 30, 2000, pp. 1047-1055 https://doi.org/10.1016/S0008-8846(00)00265-9
  25. Schiessel, P. and Breit, W., “Local Repair Measures at Concrete Structures Damaged by Reinforcement Corrosion,” In: Corrosion of Reinforcement in Concrete Construction, C. L. Page, P. B. Bamforth and J. W. Figg, eds., Cambridge UK, 1996, pp. 525-534
  26. Kayyali, O. A. and Haque, M. N., “The Cl-/OH- Ratio in Chloride-Contaminated Concrete - a Most Important Criterion,” Mag. of Concr. Res., Vol. 47, 1995, pp. 235-242 https://doi.org/10.1680/macr.1995.47.172.235
  27. Hussain, S. E., Rasheeduzafar, S., Al-Musallam, A., and Al-Gahtani, A. S., “Factors Affecting Threshold Chloride for Reinforcement Corrosion in Concrete,” Cem. Concr. Res., Vol. 25, 1995, pp. 1543-1555 https://doi.org/10.1016/0008-8846(95)00148-6
  28. Rasheeduzafar, S., Hussain, S. E., and Al-Saadoum, S. S., “Effect of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Concrete,” Cem. Concr. Res., Vol. 21, 1991, pp. 777-794 https://doi.org/10.1016/0008-8846(91)90173-F
  29. Schiessel, P. and Raupach, M., “Influence of Concrete Composition and Microclimate on the Critical Chloride Content in Concrete,” In: Corrosion of Reinforcement in Concrete, C.L. Page, K.W.J. Treadaway and P.B. Bamforth, eds., Elsevier Applied Science, London UK, 1990, pp. 49-58
  30. Hope, B. B. and Ip, A. K. C., “Chloride Corrosion Threshold in Concrete,” ACI Material Jouranl, Vol. 86, 1987, pp. 602-608
  31. Andrade, C. and Page, C. L. “Pore Solution Chemistry and Corrosion in Hydrated Cements Systems Containing Chloride Salts: A Study of Cation Specific Effect,” Cem. Concr. Res., Vol. 21, 1986, pp. 49-53
  32. Treadaway, K. W. J., Brown, B. L., and Cox, R. N., “Durability of Corrosion Resisting Steels in Concrete,” Proceeding of Institution of Civil Engineers, Vol. 86, 1989, pp. 305-331 https://doi.org/10.1680/iicep.1989.1628
  33. Locke, C. E. and Siman, A., “Electrochemistry of Reinforcing Steel in Salt-Contaminated Concrete,” In: Corrosion of Reinforcing Steel in Concrete, D.E. Tonini and J. M. Gaidis, eds., ASTM STP 713, 1978, pp. 3-16
  34. Gouda, V. K. and Halaka, W. Y., “Corrosion and Corrosion Inhibition of Reinforced Steel,” British Corros J, Vol. 5, 1970, pp. 1119-1131
  35. Trejo, D. and Pillai, R. G., “Accelerated Chloride Threshold Testing: Part I-ASTM A615 and A706 Reinforcement,” ACI Mat. J., Vol. 100, 2003, pp. 519-527
  36. Trejo, D. and Pillai, R. G., “Accelerated Chloride Threshold Testing: Part I-Corrosion-Resistant Reinforcement,” ACI Mat. J., Vol. 101, 2004, pp. 57-64
  37. Alonso, C., Castellote, M., and Andrade, C., “Chloride Threshold Dependence of Pitting Potential of Reinforcements,” Electrochemical Acta, Vol. 47, 2002, pp. 3469-3481 https://doi.org/10.1016/S0013-4686(02)00283-9
  38. Bamforth, P. B., “The Derivation of Input Data for Modelling Chloride Ingress from Eight-Years UK Coastal Exposure Trials,” Mag. of Conc. Res., Vol. 51, 1999, pp. 87-96 https://doi.org/10.1680/macr.1999.51.2.87
  39. Thomas, M., “Chloride thresholds in marine concrete,” Cem Concr Res, Vol. 26, 1996, pp. 513-519 https://doi.org/10.1016/0008-8846(96)00035-X
  40. Pettersson, K., “Chloride Threshold Value and Corrosion Rate in Reinforcement Concrete,” In: Concrete 2000, R.K. Dhir and M.R. Jones, eds., E&FN Spon, London UK, Vol. 1, 1993, pp. 461-471
  41. Tuutti, K., “Effect of Cement Type and Different Additions on Service Life,” In: Concrete 2000, R.K. Dhir and M.R. Jones, eds., E&FN Spon, London UK, Vol. 2, 1993, pp. 1285-1296
  42. Lambert, P., Page, C. L. and Vassie, P. R. W., “Investigations of Reinforcement Corrosion. 2. Electrochemical Monitoring of Steel in Chloride-contminated Concrete,” Mat. Struc., Vol. 24, 1991, pp. 351-358 https://doi.org/10.1007/BF02472068
  43. Thomas, M. D. A., Matthews, J. D., and Haynes, C. A., “Chloride Diffusion and Corrosion in Marine Exposed Concrete Containing Pulverized Fuel Ash,” In: Corrosion of Reinforcement in Concrete, C.L. Page, K.W.J. Treadaway and P.B. Bamforth, eds., Elsevier Applied Science, London UK, 1990, pp. 198-212
  44. Hansson, C. M. and Sorensen, B., “The Threshold Concentration of Chloride in Concrete For Initiation of Reinforcement Corrosion,” In: Corrosion Rates of Steel in Concrete, N.S. Berke, V. Chaker and D. Whiting, eds., ASTM STP 1075, 1988, pp. 3-16
  45. Vassie, P., “Reinforcement Corrosion and the Durability of Conrete Bridges,” Proceeding of Institution of Civil Engineers, Vol, 76, 1984, pp. 713-723 https://doi.org/10.1680/iicep.1984.1207
  46. Song, H. W., Ann, K. Y., Lee, C. H., and Lee, K. C., “Corrosion of Steel in Mortars Containing OPC, PFA, GGBS and SF with Chlorides in Cast,” The 4th Civil Engineering Conference in the Asian Region, Taipei, Taiwan, June 25-28. 2007, pp. 46-53 (In CD)
  47. Broomfield, J. P., Langfor, P. E., and Mcanoy, R., “Cathodic Protection For Reinforced Concrete: its Appliction to Buildings And Marine Structures,” Corrosion of Metals in Concrete, P. Virmani, eds., NACE Houston USA, 1987, pp. 222-235
  48. Castel, A., Vidal, T., Francois, R., and Arliguie, G. “Influence of Steel Concrete Interface Quality on Reinforcement Corrosion Induced by Chlorides,” Mag. Concr. Res., Vol. 55, 2003, pp. 151-159 https://doi.org/10.1680/macr.2003.55.2.151
  49. Andrade, C., Castelo, V. Alonso, C., and Gonzalez, J. A., “The Determination of The Corrosion Rate of Steel Embedded In Concrete By Polarization Resistance and AC Impedance Methods,” In: Corrosion Effect of Stray Currents and the Techniques for Evaluating Corrosion of Rebar Concrete, V. Chaker eds., ASTM STP 906, 1986, pp. 46-57
  50. Arya, C. and Newman, J. B., “An Assessment of Four Methods of Determining the Free Chloride Content of Concrete,” Mat. Struc., Vol. 23, 1990, pp. 319-330 https://doi.org/10.1007/BF02472710

Cited by

  1. A Study on the Anti-corrosion Properties of Organic and Inorganic Inhibitor by Electrochemical Evaluation Method in Saturated Aqueous Solution of Calcium Hydroxide vol.17, pp.4, 2013, https://doi.org/10.11112/jksmi.2013.17.4.066
  2. Comparative Study on Corrosion Protection of Reinforcing Steel by Using Amino Alcohol and Lithium Nitrite Inhibitors vol.8, pp.1, 2015, https://doi.org/10.3390/ma8010251