Controlling the Size and Surface Morphology of Carboxylated Polystyrene Latex Particles by Ammonium Hydroxide in Emulsifier-free Polymerization

  • Dong, Hyun-Bae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Yi, Gi-Ra (Korea Basic Science Institute)
  • Published : 2009.06.25

Abstract

In emulsifier-free, emulsion polymerization with ionizable comonomer, the ionization of the comonomer is critical in determining the size of the final polymerie particles at sub-micrometer scale. In this study, polystyrene latex beads with carboxylates on the surface were synthesized using acrylic acid as a comonomer. Specifically, ammonium hydroxide was added to the emulsifier-free polymerization system to promote the ionization of acrylic acid by increasing pH. Smaller polystyrene latex particles were produced by increasing the ammonium hydroxide concentration in the reaction system, due to the enhanced stability promoted by the ionization of acrylic acid during the nucleation step. In addition, the surface morphology of the polystyrene latex particles was controlled by the concentration of acrylic acid, the dissociation of which was influenced by the ammonium hydroxide concentration.

Keywords

References

  1. Y.-S. Cho, G.-R. Yi, J. H. Moon, D.-C. Kim, B.-J. Lee, and S.-M. Yang, Langmuir, 21, 10770 (2005) https://doi.org/10.1021/la051558t
  2. Y. Jin, Y. Zhu, X. Yang, H. Jiang, and C. Z. Li, J. Colloid Interf. Sci., 301, 130 (2006) https://doi.org/10.1016/j.jcis.2006.04.038
  3. S. Zhang, X.-W. Zhao, H. Xu, R. Zhu, and Z.-Z. Gu, J. Colloid Interf. Sci., 316, 168 (2006)
  4. A. M. Hillery, Pharm. Sci. Tech. Today, 1, 69 (1998) https://doi.org/10.1016/S1461-5347(98)00024-8
  5. F. Caruso, Colloids and Colloid Assemblies, Wiely-VCH, Weinheim, Germany, 2004
  6. D.-Y. Lee and J.-H. Kim, J. Appl. Polym. Sci., 69, 543 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980718)69:3<543::AID-APP14>3.0.CO;2-U
  7. P. J. Feeney, D. H. Napper, and R. G. Gilbert, Macromolecules, 20, 2922 (1987) https://doi.org/10.1021/ma00177a047
  8. G. T. Shouldice, G. A. Vandezande, and A. Rudin, Eur. Polym. J., 30, 179 (1993) https://doi.org/10.1016/0014-3057(94)90157-0
  9. T. Tanrisever, O. Okay, and I. C. S$\ddot{o}$nmezo$\{dh}$lu, J. Appl. Polym. Sci., 61, 485 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  10. S. Can and T. Tanrisever, J. Appl. Polym. Sci., 103, 2494 (2007) https://doi.org/10.1002/app.24631
  11. G. T. D. Shouldice, G. A.Vandezande, and A. Rudin, Eur. Polym. J., 30, 179 (1994) https://doi.org/10.1016/0014-3057(94)90157-0
  12. S. Can and T. Tanrisever, J. Appl. Polym. Sci., 103, 2494 (2007) https://doi.org/10.1002/app.24631
  13. D. Zou, J. J. Aklonis, and R. Salovey, J. Polym. Sci. Part A: Polym. Chem., 30, 2443 (1992) https://doi.org/10.1002/pola.1992.080301118
  14. T. Yamamoto, M. Nakayama, Y. Kanda, and K. Higashitani, J. Colloid Interf. Sci., 297, 112 (2006) https://doi.org/10.1016/j.jcis.2005.10.025
  15. J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid Polym. Sci., 252, 464 (1974) https://doi.org/10.1007/BF01554752
  16. G. W. Ceska, J. Appl. Polym. Sci., 18, 427 (1974) https://doi.org/10.1002/app.1974.070180210
  17. J.-L. Ou, J.-K. Yang, and H. Chen, Eur. Polym. J., 37, 789 (2001) https://doi.org/10.1016/S0014-3057(00)00175-0
  18. A. M. D. Santos, T. F. McKenna, and J. Guillot, J. Appl. Polym. Sci., 65, 2343 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2343::AID-APP8>3.0.CO;2-9
  19. D. Fukuhara and D. Sundberg, JCT Res., 2, 509 (2005)
  20. G. L. Shoaf and G. W. Poehlein, J. Appl. Polym. Sci., 42, 1239 (1991) https://doi.org/10.1002/app.1991.070420507
  21. P. S. Mohanty, R. Kesavamoorthy, K. Matsumoto, H. Matsuoka, and K. A. Venkatesan, Langmuir, 22, 4552 (2006) https://doi.org/10.1021/la052995a