References
- Banerjee, A., P. Kaul, and U. C. Banerjee. 2006. Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77-87 https://doi.org/10.1007/s00253-005-0255-8
- Chen, J., Y. G. Zheng, and Y. C. Shen. 2008. Biosynthesis of Pmethoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem. 43:978-983 https://doi.org/10.1016/j.procbio.2008.05.002
- Cooling, F. B., S. K. Fager, R. D. Fallon, P. W. Folsom, F. G. Gallagher, J. E. Gavagan, et al. 2001. Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J. Mol. Catal. B Enzym. 11: 295-306 https://doi.org/10.1016/S1381-1177(00)00150-8
- Graham, D., R. Pereira, D. Bareld, and D. Cowan. 2000. Nitrile biotransformation using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb. Technol. 26: 368-373 https://doi.org/10.1016/S0141-0229(99)00169-6
- Hann, E. C., A. E. Sigmund, and S. M. Hennessey. 2002. Optimization of an immobilized-cell biocatalyst for production of 4-cyanopentanoic acid. Org. Process Res. 6: 492-496 https://doi.org/10.1021/op025515k
- Hughes, J., Y. C. Armitage, and K. C. Symes. 1998. Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107-118 https://doi.org/10.1023/A:1001716332272
- Idris, A. and W. Suzana. 2006. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123 https://doi.org/10.1016/j.procbio.2005.12.002
- Kabaivanova, L., E. Dobreva, and P. Dimitrov. 2005. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J. Ind. Microbiol. Biotechnol. 32: 7-11 https://doi.org/10.1007/s10295-004-0189-7
- Kaul, P., A. Banerjee, and U. C. Banerjee. 2006. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7: 1536-1541 https://doi.org/10.1021/bm0507913
- Kawaguti, H. Y., M. F. Buzzato, and D. C. Orsi. 2006. Effect of the additives polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production. Process Biochem. 41:2035-2040 https://doi.org/10.1016/j.procbio.2006.05.003
- Li, G. Y., K. L. Huang, and Y. R. Jiang. 2007. Production of (R)-mandelic acid by immobilized cells of Saccharomyces cerevisiae on chitosan carrier. Process Biochem. 42: 1465-1469 https://doi.org/10.1016/j.procbio.2007.06.015
- Martinkova, L., N. Klempier, I. Prepechalova, V. Prikrylova, M. Ovesna, H. Griengl, and V. Kren. 1998. Chemoselective biotransformation of nitrites by Rhodococcus equi A4. Biotechnol. Lett. 20: 909-912 https://doi.org/10.1023/A:1005306723601
- Park, H.-J., K.-N. Uhm, and H.-K. Kim. 2008. R-Stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide J. Microbiol. Biotechnol. 18: 552-559
- Park, S. W., S. J. Park, S. J. Han, J. Lee, D.-S. Kim, J.-H. Kim, B. W. Kim, J. Lee, and S. J. Sim. 2007. Repeated batch production of epothilone B by immobilized Sorangium cellulosum. J. Microbiol. Biotechnol. 17: 1208-1212
- Shinde, M., C. K. Kim, and T. B. Karegoudar. 1999. Production of salicylic acid from naphthalene by immobilized Pseudomonas sp. strain NGK1. J. Microbiol. Biotechnol. 9: 482-487
- Straathof, A. J. J., S. Sie, and T. T. Franco. 2005. Feasibility of acrylic acid production by fermentation. Appl. Microbiol. Biotechnol. 67: 727-734 https://doi.org/10.1007/s00253-005-1942-1
- Vekova, J., L. Pavlu, J. Vosahlo, and J. Gabriel. 1995. Degradation of bromoxynil by resting and immobilized cells of Agrobacterium radiobacter 8/4 strain. Biotechnol. Lett. 17: 449-452 https://doi.org/10.1007/BF00130806
- Won, K., S. Kim, and K. J. Kima. 2005. Optimization of lipase entrapment in Ca-alginate gel heads. Process Biochem. 40:2149-2154 https://doi.org/10.1016/j.procbio.2004.08.014
- Woo, C. J., K. Y. Lee, and T. R. Heo. 1999. Improvement of Bifidobacterium longum stability using cell-entrapment technique. J. Microbiol. Biotechnol. 9: 132-139
- Zheng, R. C., Y. S. Wang, Z. Q. Liu, L. Y. Xing, Y. G. Zheng, and Y. C. Shen. 2007. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Res. Microbiol. 158:258-264 https://doi.org/10.1016/j.resmic.2006.12.007
Cited by
- Biosynthesis of Iminodiacetic Acid from Iminodiacetonitrile by Immobilized Recombinant Escherichia coli Harboring Nitrilase vol.22, pp.1, 2009, https://doi.org/10.1159/000337055
- An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of α-hydroxyisobutyric acid vol.36, pp.5, 2013, https://doi.org/10.1007/s00449-012-0817-y
- Chemical and enzymatic approaches to the synthesis of optically pure ethyl (R)-4-cyano-3-hydroxybutanoate vol.98, pp.1, 2009, https://doi.org/10.1007/s00253-013-5357-0
- Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization vol.38, pp.1, 2009, https://doi.org/10.1007/s00449-014-1258-6
- Catalytic routes towards acrylic acid, adipic acid and ϵ-caprolactam starting from biorenewables vol.17, pp.3, 2009, https://doi.org/10.1039/c4gc02076f
- Bench scale synthesis of p-hydroxybenzoic acid using whole-cell nitrilase of Gordonia terrae mutant E9 vol.38, pp.7, 2009, https://doi.org/10.1007/s00449-015-1367-x
- Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling vol.60, pp.26, 2009, https://doi.org/10.1021/acs.iecr.1c01649