DOI QR코드

DOI QR Code

Production of Acrylic Acid from Acrylonitrile by Immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99

  • Shen, Mei (Institute of Bioengineering, Zhejiang University of Technology) ;
  • Zheng, Yu-Guo (Institute of Bioengineering, Zhejiang University of Technology) ;
  • Liu, Zhi-Qiang (Institute of Bioengineering, Zhejiang University of Technology) ;
  • Shen, Yin-Chu (Institute of Bioengineering, Zhejiang University of Technology)
  • Published : 2009.06.30

Abstract

Immobilized cells of Arthrohacter nitroguajacolicus ZJUTB06-99 capable of producing nitrilase were used for biotransformation of acrylonitrile to acrylic acid. Six different entrapment matrixes were chosen to search for a suitable support in terms of nitrilase activity. Ca-alginate proved to be more advantageous over other counterparts in improvement of the biocatalyst activity and bead mechanical strength. The effects of sodium alginate concentration, $CaCl_2$ concentration, bead diameter, and ratio by weight of cells to alginate, on biosynthesis of acrylic acid by immobilized cells were investigated. Maximum activity was obtained under the conditions of 1.5% sodium alginate concentration, 3.0% $CaCl_2$ concentration, and 2-mm bead size. The beads coated with 0.10% polyethylenimine (PEI) and 0.75% glutaraldehyde (GA) could tolerate more phosphate and decrease leakage amounts of cells from the gel. The beads treated with PEI/GA could be reused up to 20 batches without obvious decrease in activities, which increased about 100% compared with the untreated beads with a longevity of 11 batches.

Keywords

References

  1. Banerjee, A., P. Kaul, and U. C. Banerjee. 2006. Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77-87 https://doi.org/10.1007/s00253-005-0255-8
  2. Chen, J., Y. G. Zheng, and Y. C. Shen. 2008. Biosynthesis of Pmethoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem. 43:978-983 https://doi.org/10.1016/j.procbio.2008.05.002
  3. Cooling, F. B., S. K. Fager, R. D. Fallon, P. W. Folsom, F. G. Gallagher, J. E. Gavagan, et al. 2001. Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J. Mol. Catal. B Enzym. 11: 295-306 https://doi.org/10.1016/S1381-1177(00)00150-8
  4. Graham, D., R. Pereira, D. Bareld, and D. Cowan. 2000. Nitrile biotransformation using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb. Technol. 26: 368-373 https://doi.org/10.1016/S0141-0229(99)00169-6
  5. Hann, E. C., A. E. Sigmund, and S. M. Hennessey. 2002. Optimization of an immobilized-cell biocatalyst for production of 4-cyanopentanoic acid. Org. Process Res. 6: 492-496 https://doi.org/10.1021/op025515k
  6. Hughes, J., Y. C. Armitage, and K. C. Symes. 1998. Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107-118 https://doi.org/10.1023/A:1001716332272
  7. Idris, A. and W. Suzana. 2006. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123 https://doi.org/10.1016/j.procbio.2005.12.002
  8. Kabaivanova, L., E. Dobreva, and P. Dimitrov. 2005. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J. Ind. Microbiol. Biotechnol. 32: 7-11 https://doi.org/10.1007/s10295-004-0189-7
  9. Kaul, P., A. Banerjee, and U. C. Banerjee. 2006. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7: 1536-1541 https://doi.org/10.1021/bm0507913
  10. Kawaguti, H. Y., M. F. Buzzato, and D. C. Orsi. 2006. Effect of the additives polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production. Process Biochem. 41:2035-2040 https://doi.org/10.1016/j.procbio.2006.05.003
  11. Li, G. Y., K. L. Huang, and Y. R. Jiang. 2007. Production of (R)-mandelic acid by immobilized cells of Saccharomyces cerevisiae on chitosan carrier. Process Biochem. 42: 1465-1469 https://doi.org/10.1016/j.procbio.2007.06.015
  12. Martinkova, L., N. Klempier, I. Prepechalova, V. Prikrylova, M. Ovesna, H. Griengl, and V. Kren. 1998. Chemoselective biotransformation of nitrites by Rhodococcus equi A4. Biotechnol. Lett. 20: 909-912 https://doi.org/10.1023/A:1005306723601
  13. Park, H.-J., K.-N. Uhm, and H.-K. Kim. 2008. R-Stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide J. Microbiol. Biotechnol. 18: 552-559
  14. Park, S. W., S. J. Park, S. J. Han, J. Lee, D.-S. Kim, J.-H. Kim, B. W. Kim, J. Lee, and S. J. Sim. 2007. Repeated batch production of epothilone B by immobilized Sorangium cellulosum. J. Microbiol. Biotechnol. 17: 1208-1212
  15. Shinde, M., C. K. Kim, and T. B. Karegoudar. 1999. Production of salicylic acid from naphthalene by immobilized Pseudomonas sp. strain NGK1. J. Microbiol. Biotechnol. 9: 482-487
  16. Straathof, A. J. J., S. Sie, and T. T. Franco. 2005. Feasibility of acrylic acid production by fermentation. Appl. Microbiol. Biotechnol. 67: 727-734 https://doi.org/10.1007/s00253-005-1942-1
  17. Vekova, J., L. Pavlu, J. Vosahlo, and J. Gabriel. 1995. Degradation of bromoxynil by resting and immobilized cells of Agrobacterium radiobacter 8/4 strain. Biotechnol. Lett. 17: 449-452 https://doi.org/10.1007/BF00130806
  18. Won, K., S. Kim, and K. J. Kima. 2005. Optimization of lipase entrapment in Ca-alginate gel heads. Process Biochem. 40:2149-2154 https://doi.org/10.1016/j.procbio.2004.08.014
  19. Woo, C. J., K. Y. Lee, and T. R. Heo. 1999. Improvement of Bifidobacterium longum stability using cell-entrapment technique. J. Microbiol. Biotechnol. 9: 132-139
  20. Zheng, R. C., Y. S. Wang, Z. Q. Liu, L. Y. Xing, Y. G. Zheng, and Y. C. Shen. 2007. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Res. Microbiol. 158:258-264 https://doi.org/10.1016/j.resmic.2006.12.007

Cited by

  1. Biosynthesis of Iminodiacetic Acid from Iminodiacetonitrile by Immobilized Recombinant Escherichia coli Harboring Nitrilase vol.22, pp.1, 2009, https://doi.org/10.1159/000337055
  2. An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of α-hydroxyisobutyric acid vol.36, pp.5, 2013, https://doi.org/10.1007/s00449-012-0817-y
  3. Chemical and enzymatic approaches to the synthesis of optically pure ethyl (R)-4-cyano-3-hydroxybutanoate vol.98, pp.1, 2009, https://doi.org/10.1007/s00253-013-5357-0
  4. Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization vol.38, pp.1, 2009, https://doi.org/10.1007/s00449-014-1258-6
  5. Catalytic routes towards acrylic acid, adipic acid and ϵ-caprolactam starting from biorenewables vol.17, pp.3, 2009, https://doi.org/10.1039/c4gc02076f
  6. Bench scale synthesis of p-hydroxybenzoic acid using whole-cell nitrilase of Gordonia terrae mutant E9 vol.38, pp.7, 2009, https://doi.org/10.1007/s00449-015-1367-x
  7. Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling vol.60, pp.26, 2009, https://doi.org/10.1021/acs.iecr.1c01649